前言
Python 提供给我们多种编码方式。
在某种程度上,这相当具有包容性。
来自于任何语言的人都可以编写 Python。
然而,学习写一门语言和以最优的方式写一门语言是两件不同的事情。
在这一系列名为 Python Shorts 的文章中,我将阐述 Python 提供的一些简单但是非常有用的结构,一些小技巧以及一些我在数据科学工作中遇到的案例。
在这篇文章中,我将讨论 Python 中的 for 循环,以及如何尽量避免使用它们。
写 for 循环的 3 种方式:
让我用一个简单的例子来解释下。
假设你想取得一个列表中的平方和。
在机器学习中,当我们想计算 n 维情况下两点之间的距离时,我们都会面临这个问题。
你可以使用循环很容易的做到这一点。
事实上,我想展示给你我看到的用来完成同样任务的三种方式,并让你选择你认为最好的方式。
x = [1,3,5,7,9] sum_squared = 0 for i in range(len(x)): sum_squared+=x[i]**2
当我在 Python 代码中看到以上代码的时候,我知道这个人是拥有 C 或者 Java 背景的。
完成同样的事情,更 Pythonic 的方式是:
x = [1,3,5,7,9] sum_squared = 0 for y in x: sum_squared+=y**2
这样更好了。
我没有索引这个列表。并且我的代码更具有可读性。
但是,更 Pythonic 的方式一行就可以完成。
x = [1,3,5,7,9] sum_squared = sum([y**2 for y in x])
这种方法称为 List Comprehension,这很可能是我爱上 Python 的原因之一。
你也可以在 List Comprehension 中使用 if。
假设我们只想要偶数的平方数列表。
x = [1,2,3,4,5,6,7,8,9] even_squared = [y**2 for y in x if y%2==0] # 输出结果: [4,16,36,64]
if-else?
如果我们同时想要偶数的平方数和奇数的立方数呢?
x = [1,2,3,4,5,6,7,8,9] squared_cubed = [y**2 if y%2==0 else y**3 for y in x] # 输出结果: [1, 4, 27, 16, 125, 36, 343, 64, 729]
太棒了!
因此,大体上遵循这个具体的准则:每当你想写一个 for 语句的时候,你应该问自己以下的问题,
- 可以不用 for 做到吗?更 Pythonic 的风格。
- 可以用 List Comprehension 做到吗?如果是,使用它。
- 可以不索引数组吗?如果不是,考虑使用 enumerate。
什么是 enumerate?
有时我们既需要数组中的索引,也需要数组中的值。
在这种情况下,我更喜欢使用 enumerate 而不是索引列表。
L = ['blue', 'yellow', 'orange'] for i, val in enumerate(L): print("index is %d and value is %s" % (i, val)) # 输出结果: index is 0 and value is blue index is 1 and value is yellow index is 2 and value is orange
有个规则是:
绝不索引一个列表,如果你能不使用它。
尝试使用 Dictionary Comprehension
也可以尝试使用 Dictionary Comprehension,它是 Python 中相对较新的补充,语法和 List Comprehension 很相似。
让我用一个例子来解释。我想为 x 中的每个值获取一个 dictionary(key:平方值)。
x = [1,2,3,4,5,6,7,8,9] {k:k**2 for k in x} # 输出结果: {1: 1, 2: 4, 3: 9, 4: 16, 5: 25, 6: 36, 7: 49, 8: 64, 9: 81}
如果只想得到偶数值的 dictionary 怎么办?
x = [1,2,3,4,5,6,7,8,9] {k:k**2 for k in x if x%2==0} # 输出结果: {2: 4, 4: 16, 6: 36, 8: 64}
如果想同时得到偶数值的平方和奇数值的立方怎么办?
x = [1,2,3,4,5,6,7,8,9] {k:k**2 if k%2==0 else k**3 for k in x} # 输出结果: {1: 1, 2: 4, 3: 27, 4: 16, 5: 125, 6: 36, 7: 343, 8: 64, 9: 729}
结论
最后,我要说的是,虽然看上去很容易将从其他语言获得的知识移用到 Python 上,但如果继续这样做,你将无法理解到 Python 的优美。当我们用 Python 的方式使用它,它的功能要强大得多,也要有趣得多。
所以,当需要 for 循环的时候,使用 List Comprehensions 和 Dictionary Comprehensions。当需要数组索引的时候,使用 enumerate。
避免像传染病一样的循环
从长远来看,你的代码将更具可读性和可维护性。
英文原文地址:Minimize for loop usage in Python
原文作者:Rahul Agarwal
以上就是本文的全部内容,希望对大家的学习有所帮助,也希望大家多多支持。
减少,python循环,使用
稳了!魔兽国服回归的3条重磅消息!官宣时间再确认!
昨天有一位朋友在大神群里分享,自己亚服账号被封号之后居然弹出了国服的封号信息对话框。
这里面让他访问的是一个国服的战网网址,com.cn和后面的zh都非常明白地表明这就是国服战网。
而他在复制这个网址并且进行登录之后,确实是网易的网址,也就是我们熟悉的停服之后国服发布的暴雪游戏产品运营到期开放退款的说明。这是一件比较奇怪的事情,因为以前都没有出现这样的情况,现在突然提示跳转到国服战网的网址,是不是说明了简体中文客户端已经开始进行更新了呢?
更新日志
- 小骆驼-《草原狼2(蓝光CD)》[原抓WAV+CUE]
- 群星《欢迎来到我身边 电影原声专辑》[320K/MP3][105.02MB]
- 群星《欢迎来到我身边 电影原声专辑》[FLAC/分轨][480.9MB]
- 雷婷《梦里蓝天HQⅡ》 2023头版限量编号低速原抓[WAV+CUE][463M]
- 群星《2024好听新歌42》AI调整音效【WAV分轨】
- 王思雨-《思念陪着鸿雁飞》WAV
- 王思雨《喜马拉雅HQ》头版限量编号[WAV+CUE]
- 李健《无时无刻》[WAV+CUE][590M]
- 陈奕迅《酝酿》[WAV分轨][502M]
- 卓依婷《化蝶》2CD[WAV+CUE][1.1G]
- 群星《吉他王(黑胶CD)》[WAV+CUE]
- 齐秦《穿乐(穿越)》[WAV+CUE]
- 发烧珍品《数位CD音响测试-动向效果(九)》【WAV+CUE】
- 邝美云《邝美云精装歌集》[DSF][1.6G]
- 吕方《爱一回伤一回》[WAV+CUE][454M]