神剑山庄资源网 Design By www.hcban.com
执行 datax 作业,创建执行文件,在 crontab 中每天1点(下面有关系)执行:
其中 job_start 及 job_finish 这两行记录是自己添加的,为了方便识别出哪张表。
#!/bin/bash source /etc/profile user1="root" pass1="pwd" user2="root" pass2="pwd" job_path="/opt/datax/job/" jobfile=( job_table_a.json job_table_b.json ) for filename in ${jobfile[@]} do echo "job_start: "`date "+%Y-%m-%d %H:%M:%S"`" ${filename}" python /opt/datax/bin/datax.py -p "-Duser1=${user1} -Dpass1=${pass1} -Duser2=${user2} -Dpass2=${pass2}" ${job_path}${filename} echo "job_finish: "`date "+%Y-%m-%d %H:%M:%S"`" ${filename}" done # 0 1 * * * /opt/datax/job/dc_to_ods_incr.sh /opt/datax/job/log/dc_to_ods_incr_$(date +\%Y\%m\%d_\%H\%M\%S).log 2>&1 # egrep '任务|速度|总数|job_start|job_finish' /opt/datax/job/log/
datax 执行日志:
job_start: 2018-08-08 01:13:28 job_table_a.json 任务启动时刻 : 2018-08-08 01:13:28 任务结束时刻 : 2018-08-08 01:14:49 任务总计耗时 : 81s 任务平均流量 : 192.82KB/s 记录写入速度 : 1998rec/s 读出记录总数 : 159916 读写失败总数 : 0 job_finish: 2018-08-08 01:14:49 job_table_a.json job_start: 2018-08-08 01:14:49 job_table_b.json 任务启动时刻 : 2018-08-08 01:14:50 任务结束时刻 : 2018-08-08 01:15:01 任务总计耗时 : 11s 任务平均流量 : 0B/s 记录写入速度 : 0rec/s 读出记录总数 : 0 读写失败总数 : 0 job_finish: 2018-08-08 01:15:01 job_table_b.json
接下来读取这些信息保存到数据库,在数据库中创建表:
CREATE TABLE `datax_job_result` ( `log_file` varchar(200) DEFAULT NULL, `job_file` varchar(200) DEFAULT NULL, `start_time` datetime DEFAULT NULL, `end_time` datetime DEFAULT NULL, `seconds` int(11) DEFAULT NULL, `traffic` varchar(50) DEFAULT NULL, `write_speed` varchar(50) DEFAULT NULL, `read_record` int(11) DEFAULT NULL, `failed_record` int(11) DEFAULT NULL, `job_start` varchar(200) DEFAULT NULL, `job_finish` varchar(200) DEFAULT NULL, `insert_time` datetime DEFAULT CURRENT_TIMESTAMP ) ENGINE=InnoDB DEFAULT CHARSET=utf8;
定时执行以下文件,因为 datax 作业 1 点执行,为了获取一天内最新生产的日志,脚本中取 82800内生产的日志文件,及23 小时内生产的那个最新日志。所以一天内任何时间执行都可以。此文件也是定时每天执行(判断 datax 作业完成后执行)
#!/usr/bin/python # -*- coding: UTF-8 -*- # 0 5 * * * source /etc/profile && /usr/bin/python2.7 /opt/datax/job/save_log_to_db.py > /dev/null 2>&1 import re import os import sqlalchemy import pandas as pd import datetime as dt def save_to_db(df): engine = sqlalchemy.create_engine("mysql+pymysql://root:pwd@localhost:3306/test", encoding="utf-8") df.to_sql("datax_job_result", engine, index=False, if_exists='append') def get_the_latest_file(path): t0 = dt.datetime.utcfromtimestamp(0) d2 = (dt.datetime.now() - t0).total_seconds() d1 = d2 - 82800 for (dirpath, dirnames, filenames) in os.walk(path): for filename in sorted(filenames, reverse = True): if filename.endswith(".log"): f = os.path.join(dirpath,filename) ctime = os.stat(f)[-1] if ctime>=d1 and ctime <=d2: return f def get_job_result_from_logfile(path): result = pd.DataFrame(columns=['log_file','job_file','start_time','end_time','seconds','traffic','write_speed','read_record','failed_record','job_start','job_finish']) log_file = get_the_latest_file(path) index = 0 content = open(log_file, "r") for line in content: result.loc[index, 'log_file'] = log_file if re.compile(r'job_start').match(line): result.loc[index, 'job_file'] = line.split(' ')[4].strip() result.loc[index, 'job_start'] = line, elif re.compile(r'任务启动时刻').match(line): result.loc[index, 'start_time'] = line.split('刻')[1].strip().split(' ')[1].strip() + ' ' + line.split('刻')[1].strip().split(' ')[2].strip() elif re.compile(r'任务结束时刻').match(line): result.loc[index, 'end_time'] = line.split('刻')[1].strip().split(' ')[1].strip() + ' ' + line.split('刻')[1].strip().split(' ')[2].strip() elif re.compile(r'任务总计耗时').match(line): result.loc[index, 'seconds'] = line.split(':')[1].strip().replace('s','') elif re.compile(r'任务平均流量').match(line): result.loc[index, 'traffic'] = line.split(':')[1].strip() elif re.compile(r'记录写入速度').match(line): result.loc[index, 'write_speed'] = line.split(':')[1].strip() elif re.compile(r'读出记录总数').match(line): result.loc[index, 'read_record'] = line.split(':')[1].strip() elif re.compile(r'读写失败总数').match(line): result.loc[index, 'failed_record'] = line.split(':')[1].strip() elif re.compile(r'job_finish').match(line): result.loc[index, 'job_finish'] = line, index = index + 1 else: pass save_to_db(result) get_job_result_from_logfile("/opt/datax/job/log")
以上这篇Python 获取 datax 执行结果保存到数据库的方法就是小编分享给大家的全部内容了,希望能给大家一个参考,也希望大家多多支持。
神剑山庄资源网 Design By www.hcban.com
神剑山庄资源网
免责声明:本站文章均来自网站采集或用户投稿,网站不提供任何软件下载或自行开发的软件!
如有用户或公司发现本站内容信息存在侵权行为,请邮件告知! 858582#qq.com
神剑山庄资源网 Design By www.hcban.com
暂无Python 获取 datax 执行结果保存到数据库的方法的评论...
更新日志
2024年12月25日
2024年12月25日
- 小骆驼-《草原狼2(蓝光CD)》[原抓WAV+CUE]
- 群星《欢迎来到我身边 电影原声专辑》[320K/MP3][105.02MB]
- 群星《欢迎来到我身边 电影原声专辑》[FLAC/分轨][480.9MB]
- 雷婷《梦里蓝天HQⅡ》 2023头版限量编号低速原抓[WAV+CUE][463M]
- 群星《2024好听新歌42》AI调整音效【WAV分轨】
- 王思雨-《思念陪着鸿雁飞》WAV
- 王思雨《喜马拉雅HQ》头版限量编号[WAV+CUE]
- 李健《无时无刻》[WAV+CUE][590M]
- 陈奕迅《酝酿》[WAV分轨][502M]
- 卓依婷《化蝶》2CD[WAV+CUE][1.1G]
- 群星《吉他王(黑胶CD)》[WAV+CUE]
- 齐秦《穿乐(穿越)》[WAV+CUE]
- 发烧珍品《数位CD音响测试-动向效果(九)》【WAV+CUE】
- 邝美云《邝美云精装歌集》[DSF][1.6G]
- 吕方《爱一回伤一回》[WAV+CUE][454M]