本文实例讲述了Python利用逻辑回归模型解决MNIST手写数字识别问题。分享给大家供大家参考,具体如下:
1、MNIST手写识别问题
MNIST手写数字识别问题:输入黑白的手写阿拉伯数字,通过机器学习判断输入的是几。可以通过TensorFLow下载MNIST手写数据集,通过import引入MNIST数据集并进行读取,会自动从网上下载所需文件。
%matplotlib inline import tensorflow as tf import tensorflow.examples.tutorials.mnist.input_data as input_data mnist=input_data.read_data_sets('MNIST_data/',one_hot=True) import matplotlib.pyplot as plt def plot_image(image): #图片显示函数 plt.imshow(image.reshape(28,28),cmap='binary') plt.show() print("训练集数量:",mnist.train.num_examples, "特征值组成:",mnist.train.images.shape, "标签组成:",mnist.train.labels.shape) batch_images,batch_labels=mnist.train.next_batch(batch_size=10) #批量读取数据 print(batch_images.shape,batch_labels.shape) print('标签值:',np.argmax(mnist.train.labels[1000]),end=' ') #np.argmax()得到实际值 print('独热编码表示:',mnist.train.labels[1000]) plot_image(mnist.train.images[1000]) #显示数据集中第1000张图片
输出训练集 的数量有55000个,并打印特征值的shape为(55000,784),其中784代表每张图片由28*28个像素点组成,由于是黑白图片,每个像素点只有黑白单通道,即通过784个数可以描述一张图片的特征值。可以将图片在Jupyter中输出,将784个特征值reshape为28×28的二维数组,传给plt.imshow()函数,之后再通过show()输出。
MNIST提供next_batch()方法用于批量读取数据集,例如上面批量读取10个对应的images与labels数据并分别返回。该方法会按顺序一直往后读取,直到结束后会自动打乱数据,重新继续读取。
在打开mnist数据集时,第二个参数设置one_hot,表示采用独热编码方式打开。独热编码是一种稀疏向量,其中一个元素为1,其他元素均为0,常用于表示有限个可能的组合情况。例如数字6的独热编码为第7个分量为1,其他为0的数组。可以通过np.argmax()函数返回数组最大值的下标,即独热编码表示的实际数字。通过独热编码可以将离散特征的某个取值对应欧氏空间的某个点,有利于机器学习中特征之间的距离计算
数据集的划分,一种划分为训练集用于模型的训练,测试集用于结果的测试,要求集合数量足够大,而且具有代表性。但是在多次执行后,会导致模型向测试集数据进行拟合,从而导致测试集数据失去了测试的效果。因此将数据集进一步划分为训练集、验证集、测试集,将训练后的模型用验证集验证,当多次迭代结束之后再拿测试集去测试。MNIST数据集中的训练集为mnist.train,验证集为mnist.validation,测试集为mnist.test
2、逻辑回归
与线性回归相对比,房价预测是根据多个输入参数x与对应权重w相乘再加上b得到线性的输出房价。而还有许多问题的输出是非线性的、控制在[0,1]之间的,比如判断邮件是否为垃圾邮件,手写数字为0~9等,逻辑回归就是用于处理此类问题。例如电子邮件分类器输出0.8,表示该邮件为垃圾邮件的概率是0.8.
逻辑回归通过Sigmoid函数保证输出的值在[0,1]之间,该函数可以将全体实数映射到[0,1],从而将线性的输出转换为[0,1]的数。其定义与图像如下:
在逻辑回归中如果采用均方差的损失函数,带入sigmoid会得到一个非凸函数,这类函数会有多个极小值,采用梯度下降法便无法求得最优解。因此在逻辑回归中采用对数损失函数,其中y是特征值x的标签,y'是预测值。
在手写数字识别中,通过单层神经元产生连续的输出值y,将y再输入到softmax层处理,经过函数计算将结果映射为0~9每个数字对应的概率,概率越大表示该图片越像某个数字,所有数字的概率之和为1
交叉熵损失函数:交叉熵用于刻画两个概率分布之间的距离,其中p代表正确答案,q代表预测值,交叉熵越小距离越近,从而模型的预测越准确。例如正确答案为(1,0,0),甲模型预测为(0.5,0.2,0.3),其交叉熵=-1*log0.5≈0.3,乙模型(0.7,0.1,0.2),其交叉熵=-1*log0.7≈0.15,所以乙模型预测更准确
模型的训练
首先定义二维浮点数占位符x、y,以及二维参数变量W、b并随机赋初值。之后定义前向计算为向量x与W对应叉乘再加b,并将得到的线性结果经过softmax处理得到独热编码预测值。
之后定义准确率accuracy,其值为预测值pred与真实值y相等个数来衡量
接下来初始化变量、设置超参数,并定义损失函数、优化器,之后开始训练。每轮训练中分批次读取数据进行训练,每轮训练结束后输出损失与准确率。
import numpy as np import tensorflow as tf import tensorflow.examples.tutorials.mnist.input_data as input_data mnist=input_data.read_data_sets('MNIST_data/',one_hot=True) import matplotlib.pyplot as plt #定义占位符、变量、前向计算 x=tf.placeholder(tf.float32,[None,784],name='x') y=tf.placeholder(tf.float32,[None,10],name='y') W=tf.Variable(tf.random_normal([784,10]),name='W') b=tf.Variable(tf.zeros([10]),name='b') forward=tf.matmul(x,W)+b pred=tf.nn.softmax(forward) #通过softmax将线性结果分类处理 #计算预测值与真实值的匹配个数 correct_prediction=tf.equal(tf.argmax(pred,1),tf.argmax(y,1)) #将上一步得到的布尔值转换为浮点数,并求平均值,得到准确率 accuracy=tf.reduce_mean(tf.cast(correct_prediction,tf.float32)) ss=tf.Session() init=tf.global_variables_initializer() ss.run(init) #超参数设置 train_epochs=50 batch_size=100 #每个批次的样本数 batch_num=int(mnist.train.num_examples/batch_size) #一轮需要训练多少批 learning_rate=0.01 #定义交叉熵损失函数、梯度下降优化器 loss_function=tf.reduce_mean(-tf.reduce_sum(y*tf.log(pred),reduction_indices=1)) optimizer=tf.train.GradientDescentOptimizer(learning_rate).minimize(loss_function) for epoch in range(train_epochs): for batch in range(batch_num): #分批次读取数据进行训练 xs,ys=mnist.train.next_batch(batch_size) ss.run(optimizer,feed_dict={x:xs,y:ys}) #每轮训练结束后通过带入验证集的数据,检测模型的损失与准去率 loss,acc=ss.run([loss_function,accuracy], feed_dict={x:mnist.validation.images,y:mnist.validation.labels}) print('第%2d轮训练:损失为:%9f,准确率:%.4f'%(epoch+1,loss,acc))
从每轮训练结果可以看出损失在逐渐下降,准确率在逐步上升。
结果预测
使用训练好的模型对测试集中的数据进行预测,即将mnist.test.images数据带入去求pred的值。
为了使结果更便于显示,可以借助plot函数库将图片数据显示出来,并配以文字label与predic的值。首先通过plt.gcf()得到一副图像资源并设置其大小。再通过plt.subplot(5,5,index+1)函数将其划分为5×5个子图,遍历第index+1个子图,分别将图像资源绘制到子图,通过set_title()设置每个子图的title显示内容。子图绘制结束后显示整个图片,并调用函数传入图片、标签、预测值等参数。
prediction=ss.run(tf.argmax(pred,1),feed_dict={x:mnist.test.images}) def show_result(images,labels,prediction,index,num=10): #绘制图形显示预测结果 pic=plt.gcf() #获取当前图像 pic.set_size_inches(10,12) #设置图片大小 for i in range(0,num): sub_pic=plt.subplot(5,5,i+1) #获取第i个子图 #将第index个images信息显示到子图上 sub_pic.imshow(np.reshape(images[index],(28,28)),cmap='binary') title="label:"+str(np.argmax(labels[index])) #设置子图的title内容 if len(prediction)>0: title+=",predict:"+str(prediction[index]) sub_pic.set_title(title,fontsize=10) sub_pic.set_xticks([]) #设置x、y坐标轴不显示 sub_pic.set_yticks([]) index+=1 plt.show() show_result(mnist.test.images,mnist.test.labels,prediction,10)
运行结果如下,可以看到预测的结果大多准确
更多关于Python相关内容感兴趣的读者可查看本站专题:《Python数据结构与算法教程》、《Python加密解密算法与技巧总结》、《Python编码操作技巧总结》、《Python函数使用技巧总结》、《Python字符串操作技巧汇总》及《Python入门与进阶经典教程》
希望本文所述对大家Python程序设计有所帮助。
稳了!魔兽国服回归的3条重磅消息!官宣时间再确认!
昨天有一位朋友在大神群里分享,自己亚服账号被封号之后居然弹出了国服的封号信息对话框。
这里面让他访问的是一个国服的战网网址,com.cn和后面的zh都非常明白地表明这就是国服战网。
而他在复制这个网址并且进行登录之后,确实是网易的网址,也就是我们熟悉的停服之后国服发布的暴雪游戏产品运营到期开放退款的说明。这是一件比较奇怪的事情,因为以前都没有出现这样的情况,现在突然提示跳转到国服战网的网址,是不是说明了简体中文客户端已经开始进行更新了呢?
更新日志
- 齐秦《辉煌30年24K珍藏版》2CD[WAV+CUE]
- 证声音乐图书馆《海风摇曳·盛夏爵士曲》[FLAC/分轨][321.47MB]
- 群星 《世界经典汽车音乐》 [WAV分轨][1G]
- 冷漠.2011 《冷漠的爱DSD》[WAV+CUE][1.2G]
- 陈明《流金岁月精逊【中唱】【WAV+CUE】
- 群星《Jazz-Ladies1-2爵士女伶1-2》HQCD/2CD[原抓WAV+CUE]
- 群星《美女私房歌》(黑胶)[WAV分轨]
- 郑源.2009《试音天碟》24BIT-96KHZ[WAV+CUE][1.2G]
- 飞利浦试音碟 《环球群星监听录》SACD香港版[WAV+CUE][1.1G]
- 车载音乐最强享受《车载极致女声精选CD》[WAV分轨][1G]
- 童宇.2024-爱情万年历【TOUCH音乐】【FLAC分轨】
- 黄晓君.2010-丽风金典系列VOL.1.2CD【丽风】【WAV+CUE】
- 黄晓君.2011-丽风金典系列VOL.2【丽风】【WAV+CUE】
- 群星1992《天碟国语金曲精选》香港首版[WAV+CUE][1G]
- 萧敬腾《王妃》台湾首版[WAV分轨][1G]