神剑山庄资源网 Design By www.hcban.com

废话不多说,直接上代码看吧!

import tensorflow as tf 
from tensorflow.examples.tutorials.mnist import input_data 
 
#载入数据集 
mnist = input_data.read_data_sets("MNIST_data",one_hot=True) 
 
#每个批次的大小和总共有多少个批次 
batch_size = 100 
n_batch = mnist.train.num_examples // batch_size 
 
#定义函数
def variable_summaries(var):
  with tf.name_scope('summaries'):
    mean = tf.reduce_mean(var)
    tf.summary.scalar('mean', mean) #平均值
    with tf.name_scope('stddev'):
      stddev = tf.sqrt(tf.reduce_mean(tf.square(var-mean)))
    tf.summary.scalar('stddev', stddev) #标准差
    tf.summary.scalar('max', tf.reduce_max(var))
    tf.summary.scalar('min', tf.reduce_min(var))
    tf.summary.histogram('histogram', var) #直方图
    
#命名空间
with tf.name_scope("input"):
  #定义两个placeholder 
  x = tf.placeholder(tf.float32,[None,784], name = "x_input") 
  y = tf.placeholder(tf.float32,[None,10], name = "y_input") 
 
with tf.name_scope("layer"):
  #创建一个简单的神经网络 
  with tf.name_scope('weights'):
    W = tf.Variable(tf.zeros([784,10]), name='W') 
    variable_summaries(W)
  with tf.name_scope('biases'):  
    b = tf.Variable(tf.zeros([10]), name='b') 
    variable_summaries(b)
  with tf.name_scope('wx_plus_b'): 
    wx_plus_b = tf.matmul(x,W)+b
  with tf.name_scope('softmax'):
    prediction = tf.nn.softmax(wx_plus_b) 
 
with tf.name_scope('loss'):
  #交叉熵代价函数 
  loss = tf.reduce_mean(tf.nn.softmax_cross_entropy_with_logits(labels=y, logits=prediction)) 
  tf.summary.scalar('loss', loss)
with tf.name_scope('train'):
  #使用梯度下降法 
  train_step = tf.train.GradientDescentOptimizer(0.2).minimize(loss) 
 
#初始化变量 
init = tf.global_variables_initializer() 
 
with tf.name_scope('accuracy'):
  with tf.name_scope('correct_prediction'):
    #结果存放在一个布尔型列表中 
    correct_prediction = tf.equal(tf.argmax(y,1),tf.argmax(prediction,1))#argmax返回一维张量中最大的值所在的位置 
  with tf.name_scope('accuracy'):
    #求准确率 
    accuracy = tf.reduce_mean(tf.cast(correct_prediction,tf.float32)) 
    tf.summary.scalar('accuracy', accuracy)
 
#合并所有的summary
merged = tf.summary.merge_all()
 
with tf.Session() as sess: 
  sess.run(init) 
  writer = tf.summary.FileWriter("log/", sess.graph) #写入到的位置
  for epoch in range(51): 
    for batch in range(n_batch): 
      batch_xs,batch_ys = mnist.train.next_batch(batch_size) 
      summary,_ = sess.run([merged,train_step],feed_dict={x:batch_xs, y:batch_ys}) 
    
    writer.add_summary(summary,epoch) 
    acc = sess.run(accuracy,feed_dict={x:mnist.test.images,y:mnist.test.labels}) 
    print("epoch " + str(epoch)+ "  acc " +str(acc)) 

运行程序,打开命令行界面,切换到 log 所在目录,输入

tensorboard --logdir= --logdir=C:\Users\Administrator\Desktop\Python\log

接着会返回一个链接,类似 http://PC-20160926YCLU:6006

打开谷歌浏览器或者火狐,输入网址即可查看搭建的网络结构以及识别准确率和损失函数的曲线图。

注意:如果对网络进行更改之后,在运行之前应该先删除log下的文件,在Jupyter中应该选择Kernel----->Restar & Run All, 否则新网络会和之前的混叠到一起。因为每次的网址都是一样的,在浏览器刷新页面即可。

以上这篇利用Tensorboard绘制网络识别准确率和loss曲线实例就是小编分享给大家的全部内容了,希望能给大家一个参考,也希望大家多多支持。

标签:
Tensorboard,网络识别,准确率,loss曲线

神剑山庄资源网 Design By www.hcban.com
神剑山庄资源网 免责声明:本站文章均来自网站采集或用户投稿,网站不提供任何软件下载或自行开发的软件! 如有用户或公司发现本站内容信息存在侵权行为,请邮件告知! 858582#qq.com
神剑山庄资源网 Design By www.hcban.com

评论“利用Tensorboard绘制网络识别准确率和loss曲线实例”

暂无利用Tensorboard绘制网络识别准确率和loss曲线实例的评论...

稳了!魔兽国服回归的3条重磅消息!官宣时间再确认!

昨天有一位朋友在大神群里分享,自己亚服账号被封号之后居然弹出了国服的封号信息对话框。

这里面让他访问的是一个国服的战网网址,com.cn和后面的zh都非常明白地表明这就是国服战网。

而他在复制这个网址并且进行登录之后,确实是网易的网址,也就是我们熟悉的停服之后国服发布的暴雪游戏产品运营到期开放退款的说明。这是一件比较奇怪的事情,因为以前都没有出现这样的情况,现在突然提示跳转到国服战网的网址,是不是说明了简体中文客户端已经开始进行更新了呢?