首先我们先用随机函数编造一个包含1000个数值的一维numpy数组,如下:
// An highlighted block rng = np.random.RandomState(seed=12345) samples = stats.norm.rvs(size=1000, random_state=rng)
接下来我们将使用各种方法画出以上数据的累积分布图
1、matplotlib.pyplot.hist()
def hist(self, x, bins=None, range=None, density=None, weights=None, cumulative=False, bottom=None, histtype='bar', align='mid', orientation='vertical', rwidth=None, log=False, color=None, label=None, stacked=False, normed=None, **kwargs):
第一种方法,我们使用matplotlib图形库中的hist函数,熟悉该库的人应该知道这是一个直方图绘制函数,以上是从API中找到的hist函数的所有参数,我们给出一维数组或者列表x,使用hist画出该数据的直方图。
直方图有两种形式,分别是概率分布直方图和累积分布直方图(可能说的不准确- -!),可以通过参数cucumulative来调节,默认为False,画出的是PDF,那么True画出的便是CDF直方图。
PDF(figure1)可以观察到整个数据在横轴范围内的分布,CDF(figure2)则可以看出不同的数据分布间的差异性,也可以观察到整个数据的增长趋势和波动情况。
上图是概率分布直方图,纵轴代表概率,如果置参数normed=False,纵轴代表频数
如果我们要观察两种数据分布的差异,可能使用直方图就不是很直观,各种直方柱会相互重叠,我们只需更改直方图的图像类型,令histtype=‘step',就会画出一条曲线来(Figure3,实际上就是将直方柱并在一起,除边界外颜色透明),类似于累积分布曲线。这时,我们就能很好地观察到不同数据分布曲线间的差异。
2、numpy.histogram
def histogram(a, bins=10, range=None, normed=False, weights=None, density=None)
第二种方法我们使用numpy中画直方图的函数histogram,该函数不是一个直接的绘图函数(废话- -!过渡句,哈哈),给定一组数据a,它会返回两个数组hist和bin_edges,默认情况下hist是数据在各个区间上的频率,bin_edges是划分的各个区间的边界,说到这我们大概可以想到其实该函数算是上一个函数的底层函数,我们可以依据得到的这两个数组来画直方图,我们也可以用频率数组来直接画分布曲线(Figure4)
这里我只给出了一个最原始的图像,直接用hist数组画的,如果想要变成合格的累积分布曲线图,纵轴为概率(频率乘区间长度),横轴为区间(从bin_edges数组中取n-1个)就可以了
3、stats.relfreq
def relfreq(a, numbins=10, defaultreallimits=None, weights=None) Returns ------- frequency : ndarray Binned values of relative frequency. lowerlimit : float Lower real limit binsize : float Width of each bin. extrapoints : int Extra points.
第三种方法我们使用stats中的relfreq函数,该函数和第二种的方法类似,也并非是直接画图,而是返回关于直方图的一些数据,这里的frequency直接是概率而非频率,可以直接作为CDF图的纵轴,但是横轴需要自己计算,计算公式:
res.lowerlimit + np.linspace(0,res.binsize*res.frequency.size, res.frequency.size)
这个公式应该很好理解,我就不多说了,当然这些返回值都要依赖我们所给出的bins的数目。下面我给出一段代码,便是使用stats.relfreq画出概率分布直方图和累积分布曲线图。
rng = np.random.RandomState(seed=12345) samples = stats.norm.rvs(size=1000, random_state=rng) res = stats.relfreq(samples, numbins=25) x = res.lowerlimit + np.linspace(0, res.binsize*res.frequency.size,res.frequency.size) fig = plt.figure(figsize=(5, 4)) ax = fig.add_subplot(1, 1, 1) ax.bar(x, res.frequency, width=res.binsize) ax.set_title('Relative frequency histogram') ax.set_xlim([x.min(), x.max()]) plt.show()
rng = np.random.RandomState(seed=12345) samples = stats.norm.rvs(size=1000, random_state=rng) res = stats.relfreq(samples, numbins=25) x = res.lowerlimit + np.linspace(0, res.binsize*res.frequency.size,res.frequency.size) y=np.cumsum(res.frequency) plt.plot(x,y) plt.title('Figure6 累积分布直方图') plt.show()
以上就是本人整理出来的关于画cdf直方图和曲线的三种方法,整理这方面东西的初忠是在发现在进行数据分析的时候,概率分布直方图只能观察到数据大概的分布情况,而在不同的数据样本进行比较时却很难直观滴反映其差异性,通过看论文发现cdf可以做到这一点。
本人并不是数学专业出身,想要表达其意义,但有些描述和用词不当,大家借鉴就好。希望大家多多支持!
python,绘制cdf
稳了!魔兽国服回归的3条重磅消息!官宣时间再确认!
昨天有一位朋友在大神群里分享,自己亚服账号被封号之后居然弹出了国服的封号信息对话框。
这里面让他访问的是一个国服的战网网址,com.cn和后面的zh都非常明白地表明这就是国服战网。
而他在复制这个网址并且进行登录之后,确实是网易的网址,也就是我们熟悉的停服之后国服发布的暴雪游戏产品运营到期开放退款的说明。这是一件比较奇怪的事情,因为以前都没有出现这样的情况,现在突然提示跳转到国服战网的网址,是不是说明了简体中文客户端已经开始进行更新了呢?
更新日志
- 黄乙玲1999-无字的情批[台湾首版][WAV+CUE]
- 何超仪.1996-何家淑女(EP)【华星】【WAV+CUE】
- 娃娃.1995-随风【滚石】【WAV+CUE】
- 林俊吉.2007-林俊吉【美华影音】【WAV+CUE】
- 梁静茹《勇气》滚石首版[WAV+CUE][1.1G]
- 刘若英《听说》[WAV+CUE][1.1G]
- 林忆莲《不如重新开始》 24K金 MQA 2022 再版[1.1G]
- 曾庆瑜1991-女人主意[派森][WAV+CUE]
- 江智民2024-《写给海洋HQ》头版限量编号[WAV+CUE]
- 谭咏麟2024《暴风女神Lorelei》头版限量编号MQA-UHQCD[WAV+CUE]
- 群星.2003-滚石黄金十年系列33CD【滚石】【WAV+CUE】
- 萧亚轩.2008-3面夏娃【维京】【WAV+CUE】
- 唐娜.1989-那年情人节好冷【喜玛拉雅】【WAV+CUE】
- 赵传《赵传奇》 滚石SACD系列 SACD限量版[ISO][1.1G]
- 黄龄《痒》天韵文化[WAV+CUE][1G]