神剑山庄资源网 Design By www.hcban.com

交并比(Intersection-over-Union,IoU),目标检测中使用的一个概念,是产生的候选框(candidate bound)与原标记框(ground truth bound)的交叠率,即它们的交集与并集的比值。最理想情况是完全重叠,即比值为1。

python实现交并比IOU教程

计算公式:

python实现交并比IOU教程

Python实现代码:

def cal_iou(box1, box2):
 """
 :param box1: = [xmin1, ymin1, xmax1, ymax1]
 :param box2: = [xmin2, ymin2, xmax2, ymax2]
 :return: 
 """
 xmin1, ymin1, xmax1, ymax1 = box1
 xmin2, ymin2, xmax2, ymax2 = box2
 # 计算每个矩形的面积
 s1 = (xmax1 - xmin1) * (ymax1 - ymin1) # C的面积
 s2 = (xmax2 - xmin2) * (ymax2 - ymin2) # G的面积
 
 # 计算相交矩形
 xmin = max(xmin1, xmin2)
 ymin = max(ymin1, ymin2)
 xmax = min(xmax1, xmax2)
 ymax = min(ymax1, ymax2)
 
 w = max(0, xmax - xmin)
 h = max(0, ymax - ymin)
 area = w * h # C∩G的面积
 iou = area / (s1 + s2 - area)
 return iou
# -*-coding: utf-8 -*-
"""
 @Project: IOU
 @File : IOU.py
 @Author : panjq
 @E-mail : pan_jinquan@163.com
 @Date : 2018-10-14 10:44:06
"""
def calIOU_V1(rec1, rec2):
 """
 computing IoU
 :param rec1: (y0, x0, y1, x1), which reflects
   (top, left, bottom, right)
 :param rec2: (y0, x0, y1, x1)
 :return: scala value of IoU
 """
 # 计算每个矩形的面积
 S_rec1 = (rec1[2] - rec1[0]) * (rec1[3] - rec1[1])
 S_rec2 = (rec2[2] - rec2[0]) * (rec2[3] - rec2[1])
 
 # computing the sum_area
 sum_area = S_rec1 + S_rec2
 
 # find the each edge of intersect rectangle
 left_line = max(rec1[1], rec2[1])
 right_line = min(rec1[3], rec2[3])
 top_line = max(rec1[0], rec2[0])
 bottom_line = min(rec1[2], rec2[2])
 
 # judge if there is an intersect
 if left_line >= right_line or top_line >= bottom_line:
  return 0
 else:
  intersect = (right_line - left_line) * (bottom_line - top_line)
  return intersect/(sum_area - intersect)
 
def calIOU_V2(rec1, rec2):
 """
 computing IoU
 :param rec1: (y0, x0, y1, x1), which reflects
   (top, left, bottom, right)
 :param rec2: (y0, x0, y1, x1)
 :return: scala value of IoU
 """
 # cx1 = rec1[0]
 # cy1 = rec1[1]
 # cx2 = rec1[2]
 # cy2 = rec1[3]
 # gx1 = rec2[0]
 # gy1 = rec2[1]
 # gx2 = rec2[2]
 # gy2 = rec2[3]
 cx1,cy1,cx2,cy2=rec1
 gx1,gy1,gx2,gy2=rec2
 # 计算每个矩形的面积
 S_rec1 = (cx2 - cx1) * (cy2 - cy1) # C的面积
 S_rec2 = (gx2 - gx1) * (gy2 - gy1) # G的面积
 
 # 计算相交矩形
 x1 = max(cx1, gx1)
 y1 = max(cy1, gy1)
 x2 = min(cx2, gx2)
 y2 = min(cy2, gy2)
 
 w = max(0, x2 - x1)
 h = max(0, y2 - y1)
 area = w * h # C∩G的面积
 
 iou = area / (S_rec1 + S_rec2 - area)
 return iou
 
if __name__=='__main__':
 rect1 = (661, 27, 679, 47)
 # (top, left, bottom, right)
 rect2 = (662, 27, 682, 47)
 iou1 = calIOU_V1(rect1, rect2)
 iou2 = calIOU_V2(rect1, rect2)
 print(iou1)
 print(iou2)
 

参考:https://www.jb51.net/article/184542.htm

补充知识:Python计算多分类的混淆矩阵,Precision、Recall、f1-score、mIOU等指标

直接上代码,一看很清楚

import os
import numpy as np
from glob import glob
from collections import Counter
 
def cal_confu_matrix(label, predict, class_num):
 confu_list = []
 for i in range(class_num):
  c = Counter(predict[np.where(label == i)])
  single_row = []
  for j in range(class_num):
   single_row.append(c[j])
  confu_list.append(single_row)
 return np.array(confu_list).astype(np.int32)
 
 
def metrics(confu_mat_total, save_path=None):
 '''
 :param confu_mat: 总的混淆矩阵
 backgound:是否干掉背景
 :return: txt写出混淆矩阵, precision,recall,IOU,f-score
 '''
 class_num = confu_mat_total.shape[0]
 confu_mat = confu_mat_total.astype(np.float32) + 0.0001
 col_sum = np.sum(confu_mat, axis=1) # 按行求和
 raw_sum = np.sum(confu_mat, axis=0) # 每一列的数量
 
 '''计算各类面积比,以求OA值'''
 oa = 0
 for i in range(class_num):
  oa = oa + confu_mat[i, i]
 oa = oa / confu_mat.sum()
 
 '''Kappa'''
 pe_fz = 0
 for i in range(class_num):
  pe_fz += col_sum[i] * raw_sum[i]
 pe = pe_fz / (np.sum(confu_mat) * np.sum(confu_mat))
 kappa = (oa - pe) / (1 - pe)
 
 # 将混淆矩阵写入excel中
 TP = [] # 识别中每类分类正确的个数
 
 for i in range(class_num):
  TP.append(confu_mat[i, i])
 
 # 计算f1-score
 TP = np.array(TP)
 FN = col_sum - TP
 FP = raw_sum - TP
 
 # 计算并写出precision,recall, f1-score,f1-m以及mIOU
 
 f1_m = []
 iou_m = []
 for i in range(class_num):
  # 写出f1-score
  f1 = TP[i] * 2 / (TP[i] * 2 + FP[i] + FN[i])
  f1_m.append(f1)
  iou = TP[i] / (TP[i] + FP[i] + FN[i])
  iou_m.append(iou)
 
 f1_m = np.array(f1_m)
 iou_m = np.array(iou_m)
 if save_path is not None:
  with open(save_path + 'accuracy.txt', 'w') as f:
   f.write('OA:\t%.4f\n' % (oa*100))
   f.write('kappa:\t%.4f\n' % (kappa*100))
   f.write('mf1-score:\t%.4f\n' % (np.mean(f1_m)*100))
   f.write('mIou:\t%.4f\n' % (np.mean(iou_m)*100))
 
   # 写出precision
   f.write('precision:\n')
   for i in range(class_num):
    f.write('%.4f\t' % (float(TP[i]/raw_sum[i])*100))
   f.write('\n')
 
   # 写出recall
   f.write('recall:\n')
   for i in range(class_num):
    f.write('%.4f\t' % (float(TP[i] / col_sum[i])*100))
   f.write('\n')
 
   # 写出f1-score
   f.write('f1-score:\n')
   for i in range(class_num):
    f.write('%.4f\t' % (float(f1_m[i])*100))
   f.write('\n')
 
   # 写出 IOU
   f.write('Iou:\n')
   for i in range(class_num):
    f.write('%.4f\t' % (float(iou_m[i])*100))
   f.write('\n')

以上这篇python实现交并比IOU教程就是小编分享给大家的全部内容了,希望能给大家一个参考,也希望大家多多支持。

标签:
python,交并比,IOU

神剑山庄资源网 Design By www.hcban.com
神剑山庄资源网 免责声明:本站文章均来自网站采集或用户投稿,网站不提供任何软件下载或自行开发的软件! 如有用户或公司发现本站内容信息存在侵权行为,请邮件告知! 858582#qq.com
神剑山庄资源网 Design By www.hcban.com

评论“python实现交并比IOU教程”

暂无python实现交并比IOU教程的评论...

稳了!魔兽国服回归的3条重磅消息!官宣时间再确认!

昨天有一位朋友在大神群里分享,自己亚服账号被封号之后居然弹出了国服的封号信息对话框。

这里面让他访问的是一个国服的战网网址,com.cn和后面的zh都非常明白地表明这就是国服战网。

而他在复制这个网址并且进行登录之后,确实是网易的网址,也就是我们熟悉的停服之后国服发布的暴雪游戏产品运营到期开放退款的说明。这是一件比较奇怪的事情,因为以前都没有出现这样的情况,现在突然提示跳转到国服战网的网址,是不是说明了简体中文客户端已经开始进行更新了呢?