1、集合相加
a = {1,2,3} b = {3,4,5} print(type(a)) print(a|b)
2、queryset 符合条件的筛序
projects = Project_models.objects.filter(user=request.user).order_by('id')
projects = projects.filter(bad_numbers__gt=0).order_by('bad_numbers')
补充知识:django中聚合aggregate和annotate GROUP BY的使用方法
接触django已经很长时间了,但是使用QuerySet查询集的方式一直比较低端,只会使用filter/Q函数/exclude等方式来查询,数据量比较小的时候还可以,但是如果数据量很大,而且查询比较复杂,那么如果还是使用多个filter进行查询效率就会很低。就趁着清明放假的时间,跑来公司干点私活。输出成这篇文档,一是加深印象,提高熟练度;二是分享出来,造福大家~
提高查询数据库效率的方案有两种:
第一种,是使用原生的SQL语句来进行查询,这样的优点在于能够完全按照开发者的意图来执行,效率会很高,但是缺点也很明显:
1.开发者需要非常熟悉SQL语句,加大开发者的工作量,同时,夹杂着SQL的项目也不利于以后程序的维护,增大程序的耦合度。
2.若查询条件是动态变化的,则会使开发变得更加困难。
django为了解决这一难题,提供了aggregate(聚合函数)和annotate(在aggregate的基础上进行GROUP BY操作)。
下面,就来介绍第二种方法。
一. aggregate的使用方法
今天在同事的指点下,仔细看了django中annotate的使用方法,会根据查询条件来动态生成SQL语句,提高组合查询的效率。
理解aggregate的关键在于理解SQL中的聚合函数:以下摘自百度百科:SQL基本函数,聚合函数对一组值执行计算,并返回单个值。除了 COUNT 以外,聚合函数都会忽略空值。 常见的聚合函数有AVG / COUNT / MAX / MIN /SUM 等。
aggregate就是在django中实现聚合函数的。先来看aggregate的使用场景:在项目中有时候你想要从数据库中取出一个汇总的集合。我们使用django官方的例子:
from django.db import models class Author(models.Model): name = models.CharField(max_length=100) age = models.IntegerField() class Publisher(models.Model): name = models.CharField(max_length=300) num_awards = models.IntegerField() class Book(models.Model): name = models.CharField(max_length=300) pages = models.IntegerField() price = models.DecimalField(max_digits=10, decimal_places=2) rating = models.FloatField() authors = models.ManyToManyField(Author) publisher = models.ForeignKey(Publisher) pubdate = models.DateField() class Store(models.Model): name = models.CharField(max_length=300) books = models.ManyToManyField(Book) registered_users = models.PositiveIntegerField()
如果我们使用aggregate来进行计数:
> from django.db.models import Count > pubs = Publisher.objects.aggregate(num_books=Count('book')) > pubs {'num_books': 27}
而且aggregate不单单可以求和,还可以求平均Avg,最大最小等等。
> from django.db.models import Avg > Book.objects.all().aggregate(Avg('price')) {'price__avg': 34.35} # Cost per page 输出的名字同样可以指定,比如price_per_page > from django.db.models import F, FloatField, Sum > Book.objects.all().aggregate( ... price_per_page=Sum(F('price')/F('pages'), output_field=FloatField())) {'price_per_page': 0.4470664529184653}
通过上面的介绍,我们可以知道,aggregate的逻辑比较简单,应用场景比较窄,如果你想要对数据进行分组(GROUP BY)后再聚合的操作,则需要使用annotate来实现。
二. annotate的使用方法
首先,假设有这么一个models:
# python:2.7.9 # django:1.7.8 class MessageTab(models.Model): msg_sn = models.CharField(max_lenth=20, verbose_name=u'编号') msg_name = models.CharField(max_length=50, verbose_name=u'消息名称') message_time = models.DateTimeField(verbose_name=u'消息出现时间') msg_status = models.CharField(max_length=50, default='未处理', verbose_name=u'消息状态') class Meta: db_table = 'message_tab'
如果在开发过程中,有这么一个需求:查询各个消息状态的数量。那么我们经常会使用filter(…).count(…)来进行查询。现在我们可以使用:
msgS = MessageTab.objects.values_list('msg_status').annotate(Count('id'))
其中,id为数据库自动生成的自增字段。values_list的用法自行Google,或者print出来看一看。
此时,数据库实际执行的代码,可以通过:
print msgS.query
打印出来。可以看到:
SELECT `message_tab`.`msg_status`, COUNT(`message_tab`.`id`) AS `id__count` FROM `message_tab` GROUP BY `message_tab`.`msg_status` ORDER BY NULL
很直观明了。通过msg_status来进行group by。如果想自定义id__count,比如指定为msg_num,则可以使用:annotate(msg_num=Count(‘id'))
当存在多个查询条件时,比如查询最近7天内,message_name属于某个分组内的消息,则可以使用Q函数:
date_end = now().date() + timedelta(days=1) date_start = date_end - timedelta(days=7) messageTimeRange = (date_start, date_end) GroupList = getGroupIdLis(request.user) # 返回当前用户能查询的group的一个列表。。仅做参考用 qQueryList = [Q(message_time__range=messageTimeRange), Q(message_name__in=GroupList)] # 可以有多个Q函数查询条件 msgS = MessageTab.objects.filter(reduce(operator.and_, qQueryList)).values_list('msg_status').annotate(msg_num=Count('id'))
再次调用print msgS.query可看到SQL语句:
SELECT `message_tab`.`msg_status`, COUNT(`message_tab`.`id`) AS `msg_num` FROM `message_tab` WHERE (`message_tab`.`message_time` BETWEEN 2017-03-27 00:00:00 AND 2017-04-03 00:00:00 AND `message_tab`.`message_name` IN (1785785, 78757, 285889, 2727333, 7272957, 786767)) GROUP BY `message_tab`.`msg_status` ORDER BY NULL
是不是很完美!!
以上这篇django queryset相加和筛选教程就是小编分享给大家的全部内容了,希望能给大家一个参考,也希望大家多多支持。
《魔兽世界》大逃杀!60人新游玩模式《强袭风暴》3月21日上线
暴雪近日发布了《魔兽世界》10.2.6 更新内容,新游玩模式《强袭风暴》即将于3月21 日在亚服上线,届时玩家将前往阿拉希高地展开一场 60 人大逃杀对战。
艾泽拉斯的冒险者已经征服了艾泽拉斯的大地及遥远的彼岸。他们在对抗世界上最致命的敌人时展现出过人的手腕,并且成功阻止终结宇宙等级的威胁。当他们在为即将于《魔兽世界》资料片《地心之战》中来袭的萨拉塔斯势力做战斗准备时,他们还需要在熟悉的阿拉希高地面对一个全新的敌人──那就是彼此。在《巨龙崛起》10.2.6 更新的《强袭风暴》中,玩家将会进入一个全新的海盗主题大逃杀式限时活动,其中包含极高的风险和史诗级的奖励。
《强袭风暴》不是普通的战场,作为一个独立于主游戏之外的活动,玩家可以用大逃杀的风格来体验《魔兽世界》,不分职业、不分装备(除了你在赛局中捡到的),光是技巧和战略的强弱之分就能决定出谁才是能坚持到最后的赢家。本次活动将会开放单人和双人模式,玩家在加入海盗主题的预赛大厅区域前,可以从强袭风暴角色画面新增好友。游玩游戏将可以累计名望轨迹,《巨龙崛起》和《魔兽世界:巫妖王之怒 经典版》的玩家都可以获得奖励。
更新日志
- 【雨果唱片】中国管弦乐《鹿回头》WAV
- APM亚流新世代《一起冒险》[FLAC/分轨][106.77MB]
- 崔健《飞狗》律冻文化[WAV+CUE][1.1G]
- 罗志祥《舞状元 (Explicit)》[320K/MP3][66.77MB]
- 尤雅.1997-幽雅精粹2CD【南方】【WAV+CUE】
- 张惠妹.2007-STAR(引进版)【EMI百代】【WAV+CUE】
- 群星.2008-LOVE情歌集VOL.8【正东】【WAV+CUE】
- 罗志祥《舞状元 (Explicit)》[FLAC/分轨][360.76MB]
- Tank《我不伟大,至少我能改变我。》[320K/MP3][160.41MB]
- Tank《我不伟大,至少我能改变我。》[FLAC/分轨][236.89MB]
- CD圣经推荐-夏韶声《谙2》SACD-ISO
- 钟镇涛-《百分百钟镇涛》首批限量版SACD-ISO
- 群星《继续微笑致敬许冠杰》[低速原抓WAV+CUE]
- 潘秀琼.2003-国语难忘金曲珍藏集【皇星全音】【WAV+CUE】
- 林东松.1997-2039玫瑰事件【宝丽金】【WAV+CUE】