神剑山庄资源网 Design By www.hcban.com

 PyTorch最近几年可谓大火。相比于TensorFlow,PyTorch对于Python初学者更为友好,更易上手。

        众所周知,numpy作为Python中数据分析的专业第三方库,比Python自带的Math库速度更快。同样的,在PyTorch中,有一个类似于numpy的库,称为Tensor。Tensor自称为神经网络界的numpy。

一、numpy和Tensor二者对比

对比项 numpy Tensor 相同点 可以定义多维数组,进行切片、改变维度、数学运算等 可以定义多维数组,进行切片、改变维度、数学运算等 不同点

1、产生的数组类型为numpy.ndarray;

2、会将ndarray放入CPU中进行运算;

3、导入方式为import numpy as np,后续通过np.array([1,2])建立数组;

4、numpy中没有x.type()的用法,只能使用type(x)。

1、产生的数组类型为torch.Tensor;

2、会将tensor放入GPU中进行加速运算(如果有GPU);

3、导入方式为import torch,后续通过torch.tensor([1,2])或torch.Tensor([1,2])建立数组;

4、Tensor中查看数组类型既可以使用type(x),也可以使用x.type()。但是更加推荐采用x.type(),具体原因详见下文。

 举例(以下代码均在Jupyter Notebook上运行且通过):

numpy:

import numpy as np 
x = np.array([1,2]) 
#之所以这么写,是为了告诉大家,在Jupyter Notebook中,是否带有print()函数打印出来的效果是不一样的~ 
x       #array([1, 2])
print(x)     #[1 2]
type(x)     #numpy.ndarray
print(type(x))   #<class 'numpy.ndarray'>
#注意:numpy中没有x.type()的用法,只能使用type(x)!!!

Tensor:

import torch    #注意,这里是import torch,不是import Tensor!!!
x = torch.tensor([1,2])
x       #tensor([1, 2])
print(x)     #tensor([1, 2]),注意,这里与numpy就不一样了!
 
type(x)     #torch.Tensor
print(type(x))    #<class 'torch.Tensor'>
x.type()     #'torch.LongTensor',注意:numpy中不可以这么写,会报错!!!
print(x.type())   #torch.LongTensor,注意:numpy中不可以这么写,会报错!!!

numpy与Tensor在使用上还有其他差别。由于不是本文的重点,故暂不详述。后续可能会更新~    

二、torch.tensor与torch.Tensor的区别

        细心的读者可能注意到了,通过Tensor建立数组有torch.tensor([1,2])或torch.Tensor([1,2])两种方式。那么,这两种方式有什么区别呢?

        (1)torch.tensor是从数据中推断数据类型,而torch.Tensor是torch.empty(会随机产生垃圾数组,详见实例)和torch.tensor之间的一种混合。但是,当传入数据时,torch.Tensor使用全局默认dtype(FloatTensor);

        (2)torch.tensor(1)返回一个固定值1,而torch.Tensor(1)返回一个大小为1的张量,它是初始化的随机值。

import torch    #注意,这里是import torch,不是import Tensor!!!
 
x = torch.tensor([1,2])
 
x       #tensor([1, 2])
print(x)     #tensor([1, 2]),注意,这里与numpy就不一样了!
type(x)     #torch.Tensor
print(type(x))    #<class 'torch.Tensor'>
x.type()     #'torch.LongTensor',注意:numpy中不可以这么写,会报错!!!
print(x.type())   #torch.LongTensor,注意:numpy中不可以这么写,会报错!!!
 
y = torch.Tensor([1,2])
 
y       #tensor([1., 2.]),因为torch.Tensor使用全局默认dtype(FloatTensor)
print(y)     #tensor([1., 2.]),因为torch.Tensor使用全局默认dtype(FloatTensor)
type(y)     #torch.Tensor
print(type(y))    #<class 'torch.Tensor'>
y.type()     #'torch.FloatTensor',注意:这里就与上面不一样了!tensor->LongTensor,Tensor->FloatTensor!!!
print(y.type())   #torch.FloatTensor,注意:这里就与上面不一样了!tensor->LongTensor,Tensor->FloatTensor!!!
 
z = torch.empty([1,2]) 
 
z       #随机运行两次,结果不同:tensor([[0., 0.]]),tensor([[1.4013e-45, 0.0000e+00]])
print(z)     #随机运行两次,结果不同:tensor([[0., 0.]]),tensor([[1.4013e-45, 0.0000e+00]])
type(z)     #torch.Tensor
print(type(z))    #<class 'torch.Tensor'>
z.type()     #'torch.FloatTensor',注意:empty()默认为torch.FloatTensor而不是torch.LongTensor
print(z.type())   #torch.FloatTensor,注意:empty()默认为torch.FloatTensor而不是torch.LongTensor
 
#torch.tensor(1)、torch.Tensor(1)和torch.empty(1)的对比:
t1 = torch.tensor(1)
t2 = torch.Tensor(1)
t3 = torch.empty(1)
 
t1       #tensor(1)
print(t1)     #tensor(1)
type(t1)     #torch.Tensor
print(type(t1))   #<class 'torch.Tensor'>
t1.type()     #'torch.LongTenso'
print(t1.type())   #torch.LongTensor
 
t2       #随机运行两次,结果不同:tensor([2.8026e-45]),tensor([0.])
print(t2)     #随机运行两次,结果不同:tensor([2.8026e-45]),tensor([0.])
type(t2)     #torch.Tensor
print(type(t2))   #<class 'torch.Tensor'>
t2.type()     #'torch.FloatTensor'
print(t2.type())   #torch.FloatTensor
 
t3       #随机运行两次,结果不同:tensor([0.]),tensor([1.4013e-45])
print(t3)     #随机运行两次,结果不同:tensor([0.]),tensor([1.4013e-45])
type(t3)     #torch.Tensor
print(type(t3))   #<class 'torch.Tensor'>
t3.type()     #'torch.FloatTensor'
print(t3.type())   #torch.FloatTensor

上文提到过,对于Tensor,更推荐采用x.type()来查看数据类型。是因为x.type()的输出结果为'torch.LongTensor'或'torch.FloatTensor',可以看出两个数组的种类区别。而采用type(x),则清一色的输出结果都是torch.Tensor,无法体现类型区别。

PyTorch是个神奇的工具,其中的Tensor用法要远比numpy丰富。大家可以在练习中多多总结,逐渐提高~

标签:
PyTorch,torch.tensor,torch.Tensor

神剑山庄资源网 Design By www.hcban.com
神剑山庄资源网 免责声明:本站文章均来自网站采集或用户投稿,网站不提供任何软件下载或自行开发的软件! 如有用户或公司发现本站内容信息存在侵权行为,请邮件告知! 858582#qq.com
神剑山庄资源网 Design By www.hcban.com

评论“PyTorch中torch.tensor与torch.Tensor的区别详解”

暂无PyTorch中torch.tensor与torch.Tensor的区别详解的评论...

《魔兽世界》大逃杀!60人新游玩模式《强袭风暴》3月21日上线

暴雪近日发布了《魔兽世界》10.2.6 更新内容,新游玩模式《强袭风暴》即将于3月21 日在亚服上线,届时玩家将前往阿拉希高地展开一场 60 人大逃杀对战。

艾泽拉斯的冒险者已经征服了艾泽拉斯的大地及遥远的彼岸。他们在对抗世界上最致命的敌人时展现出过人的手腕,并且成功阻止终结宇宙等级的威胁。当他们在为即将于《魔兽世界》资料片《地心之战》中来袭的萨拉塔斯势力做战斗准备时,他们还需要在熟悉的阿拉希高地面对一个全新的敌人──那就是彼此。在《巨龙崛起》10.2.6 更新的《强袭风暴》中,玩家将会进入一个全新的海盗主题大逃杀式限时活动,其中包含极高的风险和史诗级的奖励。

《强袭风暴》不是普通的战场,作为一个独立于主游戏之外的活动,玩家可以用大逃杀的风格来体验《魔兽世界》,不分职业、不分装备(除了你在赛局中捡到的),光是技巧和战略的强弱之分就能决定出谁才是能坚持到最后的赢家。本次活动将会开放单人和双人模式,玩家在加入海盗主题的预赛大厅区域前,可以从强袭风暴角色画面新增好友。游玩游戏将可以累计名望轨迹,《巨龙崛起》和《魔兽世界:巫妖王之怒 经典版》的玩家都可以获得奖励。