神剑山庄资源网 Design By www.hcban.com

在神经网络训练中,好的权重 初始化会加速训练过程。

下面说一下kernel_initializer 权重初始化的方法。

不同的层可能使用不同的关键字来传递初始化方法,一般来说指定初始化方法的关键字是kernel_initializer 和 bias_initializer

model.add(Dense(64, kernel_initializer=initializers.random_normal(stddev=0.01)))
 
# also works; will use the default parameters.
model.add(Dense(64, kernel_initializer='random_normal'))

几种初始化方法

keras.initializers.Zeros()#全0
keras.initializers.Ones()#全1
keras.initializers.RandomNormal(mean=0.0, stddev=0.05, seed=None))#指定均值和方差的正态分布初始化
keras.initializers.RandomUniform(minval=-0.05, maxval=0.05, seed=None)#指定下边界和上边界的均匀分布初始化
keras.initializers.TruncatedNormal(mean=0.0, stddev=0.05, seed=None)#截尾高斯分布初始化,位于均值两个标准差以外的数据将会被丢弃并重新生成,形成截尾分布

自定义初始化

def my_init(shape, dtype=None):
 return K.random_normal(shape, dtype=dtype)
 
model.add(Dense(64, init=my_init))

补充知识:Keras中权重weight的初始化

Keras 的原始构造模块是模型,最简单的模型称为序贯模型, Keras 的序贯模型是神经网络层的线性管道 ( 堆栈) 。

以下代码段定义了 一个包含 12 个人工神经元的单层 网络,它预计有 8 个输入变量 ( 也称为特征):

from keras.models import Sequential
 
model =Sequential()
model.add(12,input_dim=8,kernel_initializer='random_uniform')

每个神经元可以用特定的权重进行初始化 。 Keras 提供了 几个选择 , 其中最常用的选择如下所示。

random_unifrom:权重被初始化为(-0.5,0.5)之间的均匀随机的微小数值,换句话说,给定区间里的任何值都可能作为权重 。

random_normal:根据高斯分布初始化权重,其中均值为0,标准差为0.05。

zero:所有权重被初始化为0。

以上这篇keras之权重初始化方式就是小编分享给大家的全部内容了,希望能给大家一个参考,也希望大家多多支持。

标签:
keras,权重,初始化

神剑山庄资源网 Design By www.hcban.com
神剑山庄资源网 免责声明:本站文章均来自网站采集或用户投稿,网站不提供任何软件下载或自行开发的软件! 如有用户或公司发现本站内容信息存在侵权行为,请邮件告知! 858582#qq.com
神剑山庄资源网 Design By www.hcban.com

评论“keras之权重初始化方式”

暂无keras之权重初始化方式的评论...

《魔兽世界》大逃杀!60人新游玩模式《强袭风暴》3月21日上线

暴雪近日发布了《魔兽世界》10.2.6 更新内容,新游玩模式《强袭风暴》即将于3月21 日在亚服上线,届时玩家将前往阿拉希高地展开一场 60 人大逃杀对战。

艾泽拉斯的冒险者已经征服了艾泽拉斯的大地及遥远的彼岸。他们在对抗世界上最致命的敌人时展现出过人的手腕,并且成功阻止终结宇宙等级的威胁。当他们在为即将于《魔兽世界》资料片《地心之战》中来袭的萨拉塔斯势力做战斗准备时,他们还需要在熟悉的阿拉希高地面对一个全新的敌人──那就是彼此。在《巨龙崛起》10.2.6 更新的《强袭风暴》中,玩家将会进入一个全新的海盗主题大逃杀式限时活动,其中包含极高的风险和史诗级的奖励。

《强袭风暴》不是普通的战场,作为一个独立于主游戏之外的活动,玩家可以用大逃杀的风格来体验《魔兽世界》,不分职业、不分装备(除了你在赛局中捡到的),光是技巧和战略的强弱之分就能决定出谁才是能坚持到最后的赢家。本次活动将会开放单人和双人模式,玩家在加入海盗主题的预赛大厅区域前,可以从强袭风暴角色画面新增好友。游玩游戏将可以累计名望轨迹,《巨龙崛起》和《魔兽世界:巫妖王之怒 经典版》的玩家都可以获得奖励。