神剑山庄资源网 Design By www.hcban.com

以前tensorflow有bug 在winodws下无法转,但现在好像没有问题了,代码如下

将keras 下的mobilenet_v2转成了tflite

from keras.backend import clear_session
import numpy as np
import tensorflow as tf
clear_session()
np.set_printoptions(suppress=True)
input_graph_name = "../models/weights.best_mobilenet224.h5"
output_graph_name = input_graph_name[:-3] + '.tflite'
converter = tf.lite.TFLiteConverter.from_keras_model_file(model_file=input_graph_name)
converter.post_training_quantize = True
#在windows平台这个函数有问题,无法正常使用
tflite_model = converter.convert()
open(output_graph_name, "wb").write(tflite_model)
print ("generate:",output_graph_name)

补充知识:如何把Tensorflow模型转换成TFLite模型

深度学习迅猛发展,目前已经可以移植到移动端使用了,TensorFlow推出的TensorFlow Lite就是一款把深度学习应用到移动端的框架技术。

使用TensorFlowLite 需要tflite文件模型,这个模型可以由TensorFlow训练的模型转换而成。所以首先需要知道如何保存训练好的TensorFlow模型。

一般有这几种保存形式:

1、Checkpoints

2、HDF5

3、SavedModel等

保存与读取CheckPoint

当模型训练结束,可以用以下代码把权重保存成checkpoint格式

model.save_weights('./MyModel',True)

checkpoints文件仅是保存训练好的权重,不带网络结构,所以做predict时需要结合model使用

如:

model = keras_segmentation.models.segnet.mobilenet_segnet(n_classes=2, input_height=224, input_width=224)
model.load_weights('./MyModel')

保存成H5

把训练好的网络保存成h5文件很简单

model.save('MyModel.h5')

H5转换成TFLite

这里是文章主要内容

我习惯使用H5文件转换成tflite文件

官网代码是这样的

converter = tf.lite.TFLiteConverter.from_keras_model_file('newModel.h5')
tflite_model = converter.convert()
open("converted_model.tflite", "wb").write(tflite_model)

但我用的keras 2.2.4版本会报下面错误,好像说是新版的keras把relu6改掉了,找不到方法

ValueError: Unknown activation function:relu6

于是需要自己定义一个relu6

import tensorflow as tf
from tensorflow.python.keras import backend as K
from tensorflow.python.keras.utils import CustomObjectScope

def relu6(x):
 return K.relu(x, max_value=6)

with CustomObjectScope({'relu6': relu6}):
  converter = tf.lite.TFLiteConverter.from_keras_model_file('newModel.h5')
  tflite_model = converter.convert()
  open("newModel.tflite", "wb").write(tflite_model)

看到生成的tflite文件表示保存成功了

也可以这么查看tflite网络的输入输出

import numpy as np
import tensorflow as tf

# Load TFLite model and allocate tensors.
interpreter = tf.lite.Interpreter(model_path="newModel.tflite")
interpreter.allocate_tensors()

# Get input and output tensors.
input_details = interpreter.get_input_details()
output_details = interpreter.get_output_details()

print(input_details)
print(output_details)

输出了以下信息

[{'name': 'input_1', 'index': 115, 'shape': array([ 1, 224, 224, 3]), 'dtype': <class 'numpy.float32'>, 'quantization': (0.0, 0)}]

[{'name': 'activation_1/truediv', 'index': 6, 'shape': array([ 1, 12544, 2]), 'dtype': <class 'numpy.float32'>, 'quantization': (0.0, 0)}]

两个shape分别表示输入输出的numpy数组结构,dtype是数据类型

以上这篇keras .h5转移动端的.tflite文件实现方式)就是小编分享给大家的全部内容了,希望能给大家一个参考,也希望大家多多支持。

标签:
keras,h5,移动端,tflite

神剑山庄资源网 Design By www.hcban.com
神剑山庄资源网 免责声明:本站文章均来自网站采集或用户投稿,网站不提供任何软件下载或自行开发的软件! 如有用户或公司发现本站内容信息存在侵权行为,请邮件告知! 858582#qq.com
神剑山庄资源网 Design By www.hcban.com

评论“keras .h5转移动端的.tflite文件实现方式”

暂无keras .h5转移动端的.tflite文件实现方式的评论...

《魔兽世界》大逃杀!60人新游玩模式《强袭风暴》3月21日上线

暴雪近日发布了《魔兽世界》10.2.6 更新内容,新游玩模式《强袭风暴》即将于3月21 日在亚服上线,届时玩家将前往阿拉希高地展开一场 60 人大逃杀对战。

艾泽拉斯的冒险者已经征服了艾泽拉斯的大地及遥远的彼岸。他们在对抗世界上最致命的敌人时展现出过人的手腕,并且成功阻止终结宇宙等级的威胁。当他们在为即将于《魔兽世界》资料片《地心之战》中来袭的萨拉塔斯势力做战斗准备时,他们还需要在熟悉的阿拉希高地面对一个全新的敌人──那就是彼此。在《巨龙崛起》10.2.6 更新的《强袭风暴》中,玩家将会进入一个全新的海盗主题大逃杀式限时活动,其中包含极高的风险和史诗级的奖励。

《强袭风暴》不是普通的战场,作为一个独立于主游戏之外的活动,玩家可以用大逃杀的风格来体验《魔兽世界》,不分职业、不分装备(除了你在赛局中捡到的),光是技巧和战略的强弱之分就能决定出谁才是能坚持到最后的赢家。本次活动将会开放单人和双人模式,玩家在加入海盗主题的预赛大厅区域前,可以从强袭风暴角色画面新增好友。游玩游戏将可以累计名望轨迹,《巨龙崛起》和《魔兽世界:巫妖王之怒 经典版》的玩家都可以获得奖励。