一、前言
不知道大家有没有遇到过这样的问题,就是在某个软件或者某个网页里面有一篇文章,你非常喜欢,但是不能复制。或者像百度文档一样,只能复制一部分,这个时候我们就会选择截图保存。但是当我们想用到里面的文字时,还是要一个字一个字打出来。那么我们能不能直接识别图片中的文字呢?答案是肯定的。
二、Tesseract
文字识别是ORC的一部分内容,ORC的意思是光学字符识别,通俗讲就是文字识别。Tesseract是一个用于文字识别的工具,我们结合Python使用可以很快的实现文字识别。但是在此之前我们需要完成一个繁琐的工作。
(1)Tesseract的安装及配置
Tesseract的安装我们可以移步到该网址 https://digi.bib.uni-mannheim.de/tesseract/,我们可以看到如下界面:
有很多版本供大家选择,大家可以根据自己的需求选择。其中w32表示32位系统,w64表示64位系统,大家选择合适的版本即可,可能下载速度比较慢,大家可以选择链接:https://pan.baidu.com/s/1YQCMnx-wCeNrJEE3wcEnQA 提取码:rbc6下载。安装时我们需要知道我们安装的位置,将安装目录配置到系统path变量当中,我们路径是D:\CodeField\Tesseract-OCR。
我们右击我的电脑/此电脑->属性->高级系统设置->环境变量->Path->编辑->新建然后将我们的路径复制进去即可。添加好系统变量后后我们还需要依次点确定,这样才算配置好了。
(2)下载语言包
Tesseract默认是不支持中文的,如果想要识别中文或者其它语言需要下载相应的语言包,下载地址如下: https://tesseract-ocr.github.io/tessdoc/Data-Files ,进入网站后我们往下翻:
其中有两个中文语言包,一个Chinese-Simplified和Chinese-Traditional,它们分别是简体中文和繁体中文,我们选择需要的下载即可。下载完成后我们需要放到Tesseract的路径下的tessdata目录下,我们路径是D:\CodeField\Tesseract-OCR\tessdata。
(3)其它模块下载
除了上面的步骤,我们还需要下载两个模块:
pip install pytesseract pip install pillow
第一个是用于文字识别的,第二个是用于图片读取的。接下来我们就可以进行文字识别了。
三、文字识别
(1)单张图片识别
接下来的操作就要简单的多,下面是我们要识别的图片:
接下来就是我们文字识别的代码:
import pytesseract from PIL import Image # 读取图片 im = Image.open('sentence.jpg') # 识别文字 string = pytesseract.image_to_string(im) print(string)
识别结果如下:
Do not go gentle into that good night!
因为默认是支持英文的,所以我们可以直接识别,但是当我们要识别中文或其它语言时就需要做些修改:
import pytesseract from PIL import Image # 读取图片 im = Image.open('sentence.png') # 识别文字,并指定语言 string = pytesseract.image_to_string(im, lang='chi_sim') print(string)
在识别时,我们设置lang='chi_sim',也就是把语言设置为简体中文,只有当你的tessdata目录下有简体中文包该设置才会生效。下面是我们用来识别的图片:
识别结果如下:
不 要 温 顺 的 走 进 那 个 良 夜
图片内容被准确识别出来了。有一点我们需要知道,在我们将语言设置为简体中文或其它语言后,Tesseract还是可以识别出英文字符。
(2)批量图片识别
既然我们把单张图片识别列出来了,就肯定还有批量图片识别这个功能,这就需要我们准备一个txt文件了,比如我有text.txt文件,内容如下:
sentence1.jpg sentence2.jpg
我们将代码修改为如下:
import pytesseract # 识别文字 string = pytesseract.image_to_string('text.txt', lang='chi_sim') print(string)
但是这样自己写一个txt文件难免有些麻烦,因此我们又可以进行如下修改:
import os import pytesseract # 文字图片的路径 path = 'text_img/' # 获取图片路径列表 imgs = [path + i for i in os.listdir(path)] # 打开文件 f = open('text.txt', 'w+', encoding='utf-8') # 将各个图片的路径写入text.txt文件当中 for img in imgs: f.write(img + '\n') # 关闭文件 f.close() # 文字识别 string = pytesseract.image_to_string('text.txt', lang='chi_sim') print(string)
这样我们只需要传入一个文字图片的根目录就可以批量进行识别了。在测试过程中发现,Tesseract对手写体、行楷等飘逸的字体识别不准确,对一些复杂的字识别也有待提升。但是宋体、印刷体等笔画严谨的字体识别准确率很高。另外如果图片的倾斜大于一定的角度,识别结果也会有很大差别。
总结
《魔兽世界》大逃杀!60人新游玩模式《强袭风暴》3月21日上线
暴雪近日发布了《魔兽世界》10.2.6 更新内容,新游玩模式《强袭风暴》即将于3月21 日在亚服上线,届时玩家将前往阿拉希高地展开一场 60 人大逃杀对战。
艾泽拉斯的冒险者已经征服了艾泽拉斯的大地及遥远的彼岸。他们在对抗世界上最致命的敌人时展现出过人的手腕,并且成功阻止终结宇宙等级的威胁。当他们在为即将于《魔兽世界》资料片《地心之战》中来袭的萨拉塔斯势力做战斗准备时,他们还需要在熟悉的阿拉希高地面对一个全新的敌人──那就是彼此。在《巨龙崛起》10.2.6 更新的《强袭风暴》中,玩家将会进入一个全新的海盗主题大逃杀式限时活动,其中包含极高的风险和史诗级的奖励。
《强袭风暴》不是普通的战场,作为一个独立于主游戏之外的活动,玩家可以用大逃杀的风格来体验《魔兽世界》,不分职业、不分装备(除了你在赛局中捡到的),光是技巧和战略的强弱之分就能决定出谁才是能坚持到最后的赢家。本次活动将会开放单人和双人模式,玩家在加入海盗主题的预赛大厅区域前,可以从强袭风暴角色画面新增好友。游玩游戏将可以累计名望轨迹,《巨龙崛起》和《魔兽世界:巫妖王之怒 经典版》的玩家都可以获得奖励。
更新日志
- 【雨果唱片】中国管弦乐《鹿回头》WAV
- APM亚流新世代《一起冒险》[FLAC/分轨][106.77MB]
- 崔健《飞狗》律冻文化[WAV+CUE][1.1G]
- 罗志祥《舞状元 (Explicit)》[320K/MP3][66.77MB]
- 尤雅.1997-幽雅精粹2CD【南方】【WAV+CUE】
- 张惠妹.2007-STAR(引进版)【EMI百代】【WAV+CUE】
- 群星.2008-LOVE情歌集VOL.8【正东】【WAV+CUE】
- 罗志祥《舞状元 (Explicit)》[FLAC/分轨][360.76MB]
- Tank《我不伟大,至少我能改变我。》[320K/MP3][160.41MB]
- Tank《我不伟大,至少我能改变我。》[FLAC/分轨][236.89MB]
- CD圣经推荐-夏韶声《谙2》SACD-ISO
- 钟镇涛-《百分百钟镇涛》首批限量版SACD-ISO
- 群星《继续微笑致敬许冠杰》[低速原抓WAV+CUE]
- 潘秀琼.2003-国语难忘金曲珍藏集【皇星全音】【WAV+CUE】
- 林东松.1997-2039玫瑰事件【宝丽金】【WAV+CUE】