神剑山庄资源网 Design By www.hcban.com

我就废话不多说了,大家还是直接看代码吧!

# -*- coding: utf-8 -*-
"""
Created on Thu Apr 12 11:23:46 2018
@author: henbile
"""
 
#计算滚动波动率可以使用专门做技术分析的talib包里面的函数,也可以使用pandas包里面的滚动函数。
#但是两个函数对于分母的选择,就是使用N还是N-1作为分母这件事情上是有分歧的。
#另一个差异在于:talib包计算基于numpy,而pd.rolling是基于Series或者DataFrame的。
 
import pandas as pd
import numpy as np
import talib as tb
 
a = tb.VAR(closeFull[:,0], timeperiod = 12, nbdev =1)
b = tb.VAR(closeFull[:,0], timeperiod = 12, nbdev =0)
 
#我以为nbdev是涉及分母的数量,发现其实不是。nbdev = -1也没有改变。
 
c = pd.Series(closeFull[:,0]).rolling(window = 12, center = False).var()
#tb基于np数据,pd基于pd包的两个类型的数据。
 
d = pd.rolling_var(pd.Series(closeFull[:,0]), window= 12, min_periods=None, freq=None, center=False, how=None)
#__main__:1: FutureWarning: pd.rolling_var is deprecated for Series and will be removed in a future version, replace with 
#    Series.rolling(window=12,center=False).var()
 
#以前的公式是d,现在运行d会报错,所以改正成c的形式。
 
closeFull[0:12,0].var(ddof =1)
#Out[28]: 0.30576590909090895
 
#ddof参数的意义:分母是N-ddof
 
closeFull[0:12,0].var(ddof =0)
#Out[29]: 0.28028541666666656
 
#因为window是12,所以选第11个print
print(a[11],b[11],c[11],d[11])
#0.28028541666667195 0.28028541666667195 0.3057659090909086 0.3057659090909086
 
#计算都是var的计算,大胆的推测std的计算也是适用的。
#talib包的std运算的公式是tb.STDDEV
#pd.rolling就是var换成std
#谨慎起见,还是计算一下,看一看。
#最后发现大胆的推测是正确的。
 
e = tb.STDDEV(closeFull[:,0], timeperiod = fastPeriod, nbdev = 1)
f = pd.Series(closeFull[:,0]).rolling(window = fastPeriod, center = False).std()
 
closeFull[0:12,0].std(ddof =1)
#Out[45]: 0.5529610375884624
 
closeFull[0:12,0].std(ddof =0)
#Out[46]: 0.5294198869202653
 
print(e[11], f[11])
#0.5294198869202704 0.5529610375884622

补充知识:python —— .rolling(20).std()

#在这里我们取20天内的标准差

基于python计算滚动方差(标准差)talib和pd.rolling函数差异详解

以上这篇基于python计算滚动方差(标准差)talib和pd.rolling函数差异详解就是小编分享给大家的全部内容了,希望能给大家一个参考,也希望大家多多支持。

标签:
python,滚动方差,标准差,talib,pd.rolling

神剑山庄资源网 Design By www.hcban.com
神剑山庄资源网 免责声明:本站文章均来自网站采集或用户投稿,网站不提供任何软件下载或自行开发的软件! 如有用户或公司发现本站内容信息存在侵权行为,请邮件告知! 858582#qq.com
神剑山庄资源网 Design By www.hcban.com

评论“基于python计算滚动方差(标准差)talib和pd.rolling函数差异详解”

暂无基于python计算滚动方差(标准差)talib和pd.rolling函数差异详解的评论...

《魔兽世界》大逃杀!60人新游玩模式《强袭风暴》3月21日上线

暴雪近日发布了《魔兽世界》10.2.6 更新内容,新游玩模式《强袭风暴》即将于3月21 日在亚服上线,届时玩家将前往阿拉希高地展开一场 60 人大逃杀对战。

艾泽拉斯的冒险者已经征服了艾泽拉斯的大地及遥远的彼岸。他们在对抗世界上最致命的敌人时展现出过人的手腕,并且成功阻止终结宇宙等级的威胁。当他们在为即将于《魔兽世界》资料片《地心之战》中来袭的萨拉塔斯势力做战斗准备时,他们还需要在熟悉的阿拉希高地面对一个全新的敌人──那就是彼此。在《巨龙崛起》10.2.6 更新的《强袭风暴》中,玩家将会进入一个全新的海盗主题大逃杀式限时活动,其中包含极高的风险和史诗级的奖励。

《强袭风暴》不是普通的战场,作为一个独立于主游戏之外的活动,玩家可以用大逃杀的风格来体验《魔兽世界》,不分职业、不分装备(除了你在赛局中捡到的),光是技巧和战略的强弱之分就能决定出谁才是能坚持到最后的赢家。本次活动将会开放单人和双人模式,玩家在加入海盗主题的预赛大厅区域前,可以从强袭风暴角色画面新增好友。游玩游戏将可以累计名望轨迹,《巨龙崛起》和《魔兽世界:巫妖王之怒 经典版》的玩家都可以获得奖励。