神剑山庄资源网 Design By www.hcban.com

上周在实验室开荒某个代码,看到中间这么一段,对Tensorflow中的stop_gradient()还不熟悉,特此周末进行重新并总结。

y = xx + K.stop_gradient(rounded - xx)

这代码最终调用位置在tensoflow.python.ops.gen_array_ops.stop_gradient(input, name=None),关于这段代码为什么这样写的意义在文末给出。

【stop_gradient()意义】

用stop_gradient生成损失函数w.r.t.的梯度。

【tf.gradients()理解】

tf中我们只需要设计我们自己的函数,tf提供提供强大的自动计算函数梯度方法,tf.gradients()。

tf.gradients(
 ys,
 xs,
 grad_ys=None,
 name='gradients',
 colocate_gradients_with_ops=False,
 gate_gradients=False,
 aggregation_method=None,
 stop_gradients=None,
 unconnected_gradients=tf.UnconnectedGradients.NONE
)

gradients() adds ops to the graph to output the derivatives of ys with respect to xs. It returns a list of Tensor of length len(xs) where each tensor is the sum(dy/dx) for y in ys.

1、tf.gradients()实现ys对xs的求导

2、ys和xs可以是Tensor或者list包含的Tensor

3、求导返回值是一个list,list的长度等于len(xs)

eg.假设返回值是[grad1, grad2, grad3],ys=[y1, y2],xs=[x1, x2, x3]。则计算过程为:

Tensorflow中k.gradients()和tf.stop_gradient()用法说明

import numpy as np
import tensorflow as tf
 
#构造数据集
x_pure = np.random.randint(-10, 100, 32)
x_train = x_pure + np.random.randn(32) / 32
y_train = 3 * x_pure + 2 + np.random.randn(32) / 32
 
x_input = tf.placeholder(tf.float32, name='x_input')
y_input = tf.placeholder(tf.float32, name='y_input')
w = tf.Variable(2.0, name='weight')
b = tf.Variable(1.0, name='biases')
y = tf.add(tf.multiply(x_input, w), b)
 
loss_op = tf.reduce_sum(tf.pow(y_input - y, 2)) / (2 * 32)
train_op = tf.train.GradientDescentOptimizer(0.01).minimize(loss_op)
gradients_node = tf.gradients(loss_op, w)
 
sess = tf.Session()
init = tf.global_variables_initializer()
sess.run(init)
 
for i in range(20):
 _, gradients, loss = sess.run([train_op, gradients_node, loss_op], feed_dict={x_input: x_train[i], y_input: y_train[i]})
 print("epoch: {} \t loss: {} \t gradients: {}".format(i, loss, gradients))
sess.close()

自定义梯度和更新函数

import numpy as np
import tensorflow as tf
 
#构造数据集
x_pure = np.random.randint(-10, 100, 32)
x_train = x_pure + np.random.randn(32) / 32
y_train = 3 * x_pure + 2 + np.random.randn(32) / 32
 
x_input = tf.placeholder(tf.float32, name='x_input')
y_input = tf.placeholder(tf.float32, name='y_input')
w = tf.Variable(2.0, name='weight')
b = tf.Variable(1.0, name='biases')
y = tf.add(tf.multiply(x_input, w), b)
 
loss_op = tf.reduce_sum(tf.pow(y_input - y, 2)) / (2 * 32)
# train_op = tf.train.GradientDescentOptimizer(0.01).minimize(loss_op)
 
#自定义权重更新
grad_w, grad_b = tf.gradients(loss_op, [w, b])
new_w = w.assign(w - 0.01 * grad_w)
new_b = b.assign(b - 0.01 * grad_b)
 
init = tf.global_variables_initializer()
sess = tf.Session()
sess.run(init)
 
for i in range(20):
 _, gradients, loss = sess.run([new_w, new_b, loss_op], feed_dict={x_input: x_train[i], y_input: y_train[i]})
 print("epoch: {} \t loss: {} \t gradients: {}".format(i, loss, gradients))
sess.close()

【tf.stop_gradient()理解】

在tf.gradients()参数中存在stop_gradients,这是一个List,list中的元素是tensorflow graph中的op,一旦进入这个list,将不会被计算梯度,更重要的是,在该op之后的BP计算都不会运行。

import numpy as np
import tensorflow as tf
 
a = tf.constant(0.)
b = 2 * a
c = a + b
g = tf.gradients(c, [a, b])
 
with tf.Session() as sess:
 tf.global_variables_initializer().run()
 print(sess.run(g))
 
#输出[3.0, 1.0]

在用一个stop_gradient()的例子

import tensorflow as tf
 
#实验一
w1 = tf.Variable(2.0)
w2 = tf.Variable(2.0)
a = tf.multiply(w1, 3.0)
a_stoped = tf.stop_gradient(a)
 
# b=w1*3.0*w2
b = tf.multiply(a_stoped, w2)
gradients = tf.gradients(b, xs=[w1, w2])
print(gradients)
#输出[None, <tf.Tensor 'gradients/Mul_1_grad/Reshape_1:0' shape=() dtype=float32>]
 
#实验二
a = tf.Variable(1.0)
b = tf.Variable(1.0)
c = tf.add(a, b)
c_stoped = tf.stop_gradient(c)
d = tf.add(a, b)
e = tf.add(c_stoped, d)
gradients = tf.gradients(e, xs=[a, b])
with tf.Session() as sess:
 tf.global_variables_initializer().run()
 print(sess.run(gradients))
 
#因为梯度从另外地方传回,所以输出 [1.0, 1.0]

【答案】

开始提出的问题,为什么存在那段代码:

t = g(x)

y = t + tf.stop_gradient(f(x) - t)

这里,我们本来的前向传递函数是XX,但是想要在反向时传递的函数是g(x),因为在前向过程中,tf.stop_gradient()不起作用,因此+t和-t抵消掉了,只剩下f(x)前向传递;而在反向过程中,因为tf.stop_gradient()的作用,使得f(x)-t的梯度变为了0,从而只剩下g(x)在反向传递。

以上这篇Tensorflow中k.gradients()和tf.stop_gradient()用法说明就是小编分享给大家的全部内容了,希望能给大家一个参考,也希望大家多多支持。

标签:
Tensorflow,k.gradients,tf.stop_gradient

神剑山庄资源网 Design By www.hcban.com
神剑山庄资源网 免责声明:本站文章均来自网站采集或用户投稿,网站不提供任何软件下载或自行开发的软件! 如有用户或公司发现本站内容信息存在侵权行为,请邮件告知! 858582#qq.com
神剑山庄资源网 Design By www.hcban.com

评论“Tensorflow中k.gradients()和tf.stop_gradient()用法说明”

暂无Tensorflow中k.gradients()和tf.stop_gradient()用法说明的评论...

《魔兽世界》大逃杀!60人新游玩模式《强袭风暴》3月21日上线

暴雪近日发布了《魔兽世界》10.2.6 更新内容,新游玩模式《强袭风暴》即将于3月21 日在亚服上线,届时玩家将前往阿拉希高地展开一场 60 人大逃杀对战。

艾泽拉斯的冒险者已经征服了艾泽拉斯的大地及遥远的彼岸。他们在对抗世界上最致命的敌人时展现出过人的手腕,并且成功阻止终结宇宙等级的威胁。当他们在为即将于《魔兽世界》资料片《地心之战》中来袭的萨拉塔斯势力做战斗准备时,他们还需要在熟悉的阿拉希高地面对一个全新的敌人──那就是彼此。在《巨龙崛起》10.2.6 更新的《强袭风暴》中,玩家将会进入一个全新的海盗主题大逃杀式限时活动,其中包含极高的风险和史诗级的奖励。

《强袭风暴》不是普通的战场,作为一个独立于主游戏之外的活动,玩家可以用大逃杀的风格来体验《魔兽世界》,不分职业、不分装备(除了你在赛局中捡到的),光是技巧和战略的强弱之分就能决定出谁才是能坚持到最后的赢家。本次活动将会开放单人和双人模式,玩家在加入海盗主题的预赛大厅区域前,可以从强袭风暴角色画面新增好友。游玩游戏将可以累计名望轨迹,《巨龙崛起》和《魔兽世界:巫妖王之怒 经典版》的玩家都可以获得奖励。