我就废话不多说了,大家还是直接看代码吧!
def iou(y_true, y_pred, label: int): """ Return the Intersection over Union (IoU) for a given label. Args: y_true: the expected y values as a one-hot y_pred: the predicted y values as a one-hot or softmax output label: the label to return the IoU for Returns: the IoU for the given label """ # extract the label values using the argmax operator then # calculate equality of the predictions and truths to the label y_true = K.cast(K.equal(K.argmax(y_true), label), K.floatx()) y_pred = K.cast(K.equal(K.argmax(y_pred), label), K.floatx()) # calculate the |intersection| (AND) of the labels intersection = K.sum(y_true * y_pred) # calculate the |union| (OR) of the labels union = K.sum(y_true) + K.sum(y_pred) - intersection # avoid divide by zero - if the union is zero, return 1 # otherwise, return the intersection over union return K.switch(K.equal(union, 0), 1.0, intersection / union) def mean_iou(y_true, y_pred): """ Return the Intersection over Union (IoU) score. Args: y_true: the expected y values as a one-hot y_pred: the predicted y values as a one-hot or softmax output Returns: the scalar IoU value (mean over all labels) """ # get number of labels to calculate IoU for num_labels = K.int_shape(y_pred)[-1] - 1 # initialize a variable to store total IoU in mean_iou = K.variable(0) # iterate over labels to calculate IoU for for label in range(num_labels): mean_iou = mean_iou + iou(y_true, y_pred, label) # divide total IoU by number of labels to get mean IoU return mean_iou / num_labels
补充知识:keras 自定义评估函数和损失函数loss训练模型后加载模型出现ValueError: Unknown metric function:fbeta_score
keras自定义评估函数
有时候训练模型,现有的评估函数并不足以科学的评估模型的好坏,这时候就需要自定义一些评估函数,比如样本分布不均衡是准确率accuracy评估无法判定一个模型的好坏,这时候需要引入精确度和召回率作为评估标准,不幸的是keras没有这些评估函数。
以下是参考别的文章摘取的两个自定义评估函数
召回率:
def recall(y_true, y_pred): true_positives = K.sum(K.round(K.clip(y_true * y_pred, 0, 1))) possible_positives = K.sum(K.round(K.clip(y_true, 0, 1))) recall = true_positives / (possible_positives + K.epsilon()) return recall
精确度:
def precision(y_true, y_pred): true_positives = K.sum(K.round(K.clip(y_true * y_pred, 0, 1))) predicted_positives = K.sum(K.round(K.clip(y_pred, 0, 1))) precision = true_positives / (predicted_positives + K.epsilon()) return precision
自定义了评估函数,一般在编译模型阶段加入即可:
model.compile(optimizer='adam', loss='categorical_crossentropy', metrics=['accuracy', precision, recall])
自定义了损失函数focal_loss一般也在编译阶段加入:
model.compile(optimizer=Adam(lr=0.0001), loss=[focal_loss],
metrics=['accuracy',fbeta_score], )
其他的没有特别要注意的点,直接按照原来的思路训练一版模型出来就好了,关键的地方在于加载模型这里,自定义的函数需要特殊的加载方式,不然会出现加载没有自定义函数的问题:ValueError: Unknown loss function:focal_loss
解决方案:
model_name = 'test_calssification_model.h5' model_dfcw = load_model(model_name, custom_objects={'focal_loss': focal_loss,'fbeta_score':fbeta_score})
注意点:将自定义的损失函数和评估函数都加入到custom_objects里,以上就是在自定义一个损失函数从编译模型阶段到加载模型阶段出现的所有的问题。
以上这篇Keras自定义IOU方式就是小编分享给大家的全部内容了,希望能给大家一个参考,也希望大家多多支持。
Keras,自定义,IOU
《魔兽世界》大逃杀!60人新游玩模式《强袭风暴》3月21日上线
暴雪近日发布了《魔兽世界》10.2.6 更新内容,新游玩模式《强袭风暴》即将于3月21 日在亚服上线,届时玩家将前往阿拉希高地展开一场 60 人大逃杀对战。
艾泽拉斯的冒险者已经征服了艾泽拉斯的大地及遥远的彼岸。他们在对抗世界上最致命的敌人时展现出过人的手腕,并且成功阻止终结宇宙等级的威胁。当他们在为即将于《魔兽世界》资料片《地心之战》中来袭的萨拉塔斯势力做战斗准备时,他们还需要在熟悉的阿拉希高地面对一个全新的敌人──那就是彼此。在《巨龙崛起》10.2.6 更新的《强袭风暴》中,玩家将会进入一个全新的海盗主题大逃杀式限时活动,其中包含极高的风险和史诗级的奖励。
《强袭风暴》不是普通的战场,作为一个独立于主游戏之外的活动,玩家可以用大逃杀的风格来体验《魔兽世界》,不分职业、不分装备(除了你在赛局中捡到的),光是技巧和战略的强弱之分就能决定出谁才是能坚持到最后的赢家。本次活动将会开放单人和双人模式,玩家在加入海盗主题的预赛大厅区域前,可以从强袭风暴角色画面新增好友。游玩游戏将可以累计名望轨迹,《巨龙崛起》和《魔兽世界:巫妖王之怒 经典版》的玩家都可以获得奖励。
更新日志
- 【雨果唱片】中国管弦乐《鹿回头》WAV
- APM亚流新世代《一起冒险》[FLAC/分轨][106.77MB]
- 崔健《飞狗》律冻文化[WAV+CUE][1.1G]
- 罗志祥《舞状元 (Explicit)》[320K/MP3][66.77MB]
- 尤雅.1997-幽雅精粹2CD【南方】【WAV+CUE】
- 张惠妹.2007-STAR(引进版)【EMI百代】【WAV+CUE】
- 群星.2008-LOVE情歌集VOL.8【正东】【WAV+CUE】
- 罗志祥《舞状元 (Explicit)》[FLAC/分轨][360.76MB]
- Tank《我不伟大,至少我能改变我。》[320K/MP3][160.41MB]
- Tank《我不伟大,至少我能改变我。》[FLAC/分轨][236.89MB]
- CD圣经推荐-夏韶声《谙2》SACD-ISO
- 钟镇涛-《百分百钟镇涛》首批限量版SACD-ISO
- 群星《继续微笑致敬许冠杰》[低速原抓WAV+CUE]
- 潘秀琼.2003-国语难忘金曲珍藏集【皇星全音】【WAV+CUE】
- 林东松.1997-2039玫瑰事件【宝丽金】【WAV+CUE】