1 介绍
U-Net最初是用来对医学图像的语义分割,后来也有人将其应用于其他领域。但大多还是用来进行二分类,即将原始图像分成两个灰度级或者色度,依次找到图像中感兴趣的目标部分。
本文主要利用U-Net网络结构实现了多类的语义分割,并展示了部分测试效果,希望对你有用!
2 源代码
(1)训练模型
from __future__ import print_function import os import datetime import numpy as np from keras.models import Model from keras.layers import Input, concatenate, Conv2D, MaxPooling2D, Conv2DTranspose, AveragePooling2D, Dropout, BatchNormalization from keras.optimizers import Adam from keras.layers.convolutional import UpSampling2D, Conv2D from keras.callbacks import ModelCheckpoint from keras import backend as K from keras.layers.advanced_activations import LeakyReLU, ReLU import cv2 PIXEL = 512 #set your image size BATCH_SIZE = 5 lr = 0.001 EPOCH = 100 X_CHANNEL = 3 # training images channel Y_CHANNEL = 1 # label iamges channel X_NUM = 422 # your traning data number pathX = 'I:\\Pascal VOC Dataset\\train1\\images\\' #change your file path pathY = 'I:\\Pascal VOC Dataset\\train1\\SegmentationObject\\' #change your file path #data processing def generator(pathX, pathY,BATCH_SIZE): while 1: X_train_files = os.listdir(pathX) Y_train_files = os.listdir(pathY) a = (np.arange(1, X_NUM)) X = [] Y = [] for i in range(BATCH_SIZE): index = np.random.choice(a) # print(index) img = cv2.imread(pathX + X_train_files[index], 1) img = np.array(img).reshape(PIXEL, PIXEL, X_CHANNEL) X.append(img) img1 = cv2.imread(pathY + Y_train_files[index], 1) img1 = np.array(img1).reshape(PIXEL, PIXEL, Y_CHANNEL) Y.append(img1) X = np.array(X) Y = np.array(Y) yield X, Y #creat unet network inputs = Input((PIXEL, PIXEL, 3)) conv1 = Conv2D(8, 3, activation='relu', padding='same', kernel_initializer='he_normal')(inputs) pool1 = AveragePooling2D(pool_size=(2, 2))(conv1) # 16 conv2 = BatchNormalization(momentum=0.99)(pool1) conv2 = Conv2D(64, 3, activation='relu', padding='same', kernel_initializer='he_normal')(conv2) conv2 = BatchNormalization(momentum=0.99)(conv2) conv2 = Conv2D(64, 1, activation='relu', padding='same', kernel_initializer='he_normal')(conv2) conv2 = Dropout(0.02)(conv2) pool2 = AveragePooling2D(pool_size=(2, 2))(conv2) # 8 conv3 = BatchNormalization(momentum=0.99)(pool2) conv3 = Conv2D(128, 3, activation='relu', padding='same', kernel_initializer='he_normal')(conv3) conv3 = BatchNormalization(momentum=0.99)(conv3) conv3 = Conv2D(128, 1, activation='relu', padding='same', kernel_initializer='he_normal')(conv3) conv3 = Dropout(0.02)(conv3) pool3 = AveragePooling2D(pool_size=(2, 2))(conv3) # 4 conv4 = BatchNormalization(momentum=0.99)(pool3) conv4 = Conv2D(256, 3, activation='relu', padding='same', kernel_initializer='he_normal')(conv4) conv4 = BatchNormalization(momentum=0.99)(conv4) conv4 = Conv2D(256, 1, activation='relu', padding='same', kernel_initializer='he_normal')(conv4) conv4 = Dropout(0.02)(conv4) pool4 = AveragePooling2D(pool_size=(2, 2))(conv4) conv5 = BatchNormalization(momentum=0.99)(pool4) conv5 = Conv2D(512, 3, activation='relu', padding='same', kernel_initializer='he_normal')(conv5) conv5 = BatchNormalization(momentum=0.99)(conv5) conv5 = Conv2D(512, 1, activation='relu', padding='same', kernel_initializer='he_normal')(conv5) conv5 = Dropout(0.02)(conv5) pool4 = AveragePooling2D(pool_size=(2, 2))(conv4) # conv5 = Conv2D(35, 3, activation='relu', padding='same', kernel_initializer='he_normal')(conv4) # drop4 = Dropout(0.02)(conv5) pool4 = AveragePooling2D(pool_size=(2, 2))(pool3) # 2 pool5 = AveragePooling2D(pool_size=(2, 2))(pool4) # 1 conv6 = BatchNormalization(momentum=0.99)(pool5) conv6 = Conv2D(256, 3, activation='relu', padding='same', kernel_initializer='he_normal')(conv6) conv7 = Conv2D(256, 3, activation='relu', padding='same', kernel_initializer='he_normal')(conv6) up7 = (UpSampling2D(size=(2, 2))(conv7)) # 2 conv7 = Conv2D(256, 3, activation='relu', padding='same', kernel_initializer='he_normal')(up7) merge7 = concatenate([pool4, conv7], axis=3) conv8 = Conv2D(128, 3, activation='relu', padding='same', kernel_initializer='he_normal')(merge7) up8 = (UpSampling2D(size=(2, 2))(conv8)) # 4 conv8 = Conv2D(128, 3, activation='relu', padding='same', kernel_initializer='he_normal')(up8) merge8 = concatenate([pool3, conv8], axis=3) conv9 = Conv2D(64, 3, activation='relu', padding='same', kernel_initializer='he_normal')(merge8) up9 = (UpSampling2D(size=(2, 2))(conv9)) # 8 conv9 = Conv2D(64, 3, activation='relu', padding='same', kernel_initializer='he_normal')(up9) merge9 = concatenate([pool2, conv9], axis=3) conv10 = Conv2D(32, 3, activation='relu', padding='same', kernel_initializer='he_normal')(merge9) up10 = (UpSampling2D(size=(2, 2))(conv10)) # 16 conv10 = Conv2D(32, 3, activation='relu', padding='same', kernel_initializer='he_normal')(up10) conv11 = Conv2D(16, 3, activation='relu', padding='same', kernel_initializer='he_normal')(conv10) up11 = (UpSampling2D(size=(2, 2))(conv11)) # 32 conv11 = Conv2D(8, 3, activation='relu', padding='same', kernel_initializer='he_normal')(up11) # conv12 = Conv2D(3, 1, activation='relu', padding='same', kernel_initializer='he_normal')(conv11) conv12 = Conv2D(3, 1, activation='relu', padding='same', kernel_initializer='he_normal')(conv11) model = Model(input=inputs, output=conv12) print(model.summary()) model.compile(optimizer=Adam(lr=1e-3), loss='mse', metrics=['accuracy']) history = model.fit_generator(generator(pathX, pathY,BATCH_SIZE), steps_per_epoch=600, nb_epoch=EPOCH) end_time = datetime.datetime.now().strftime('%Y-%m-%d %H:%M:%S') #save your training model model.save(r'V1_828.h5') #save your loss data mse = np.array((history.history['loss'])) np.save(r'V1_828.npy', mse)
(2)测试模型
from keras.models import load_model import numpy as np import matplotlib.pyplot as plt import os import cv2 model = load_model('V1_828.h5') test_images_path = 'I:\\Pascal VOC Dataset\\test\\test_images\\' test_gt_path = 'I:\\Pascal VOC Dataset\\test\\SegmentationObject\\' pre_path = 'I:\\Pascal VOC Dataset\\test\\pre\\' X = [] for info in os.listdir(test_images_path): A = cv2.imread(test_images_path + info) X.append(A) # i += 1 X = np.array(X) print(X.shape) Y = model.predict(X) groudtruth = [] for info in os.listdir(test_gt_path): A = cv2.imread(test_gt_path + info) groudtruth.append(A) groudtruth = np.array(groudtruth) i = 0 for info in os.listdir(test_images_path): cv2.imwrite(pre_path + info,Y[i]) i += 1 a = range(10) n = np.random.choice(a) cv2.imwrite('prediction.png',Y[n]) cv2.imwrite('groudtruth.png',groudtruth[n]) fig, axs = plt.subplots(1, 3) # cnt = 1 # for j in range(1): axs[0].imshow(np.abs(X[n])) axs[0].axis('off') axs[1].imshow(np.abs(Y[n])) axs[1].axis('off') axs[2].imshow(np.abs(groudtruth[n])) axs[2].axis('off') # cnt += 1 fig.savefig("imagestest.png") plt.close()
3 效果展示
说明:从左到右依次是预测图像,真实图像,标注图像。可以看出,对于部分数据的分割效果还有待改进,主要原因还是数据集相对复杂,模型难于找到其中的规律。
以上这篇Keras:Unet网络实现多类语义分割方式就是小编分享给大家的全部内容了,希望能给大家一个参考,也希望大家多多支持。
《魔兽世界》大逃杀!60人新游玩模式《强袭风暴》3月21日上线
暴雪近日发布了《魔兽世界》10.2.6 更新内容,新游玩模式《强袭风暴》即将于3月21 日在亚服上线,届时玩家将前往阿拉希高地展开一场 60 人大逃杀对战。
艾泽拉斯的冒险者已经征服了艾泽拉斯的大地及遥远的彼岸。他们在对抗世界上最致命的敌人时展现出过人的手腕,并且成功阻止终结宇宙等级的威胁。当他们在为即将于《魔兽世界》资料片《地心之战》中来袭的萨拉塔斯势力做战斗准备时,他们还需要在熟悉的阿拉希高地面对一个全新的敌人──那就是彼此。在《巨龙崛起》10.2.6 更新的《强袭风暴》中,玩家将会进入一个全新的海盗主题大逃杀式限时活动,其中包含极高的风险和史诗级的奖励。
《强袭风暴》不是普通的战场,作为一个独立于主游戏之外的活动,玩家可以用大逃杀的风格来体验《魔兽世界》,不分职业、不分装备(除了你在赛局中捡到的),光是技巧和战略的强弱之分就能决定出谁才是能坚持到最后的赢家。本次活动将会开放单人和双人模式,玩家在加入海盗主题的预赛大厅区域前,可以从强袭风暴角色画面新增好友。游玩游戏将可以累计名望轨迹,《巨龙崛起》和《魔兽世界:巫妖王之怒 经典版》的玩家都可以获得奖励。
更新日志
- 【雨果唱片】中国管弦乐《鹿回头》WAV
- APM亚流新世代《一起冒险》[FLAC/分轨][106.77MB]
- 崔健《飞狗》律冻文化[WAV+CUE][1.1G]
- 罗志祥《舞状元 (Explicit)》[320K/MP3][66.77MB]
- 尤雅.1997-幽雅精粹2CD【南方】【WAV+CUE】
- 张惠妹.2007-STAR(引进版)【EMI百代】【WAV+CUE】
- 群星.2008-LOVE情歌集VOL.8【正东】【WAV+CUE】
- 罗志祥《舞状元 (Explicit)》[FLAC/分轨][360.76MB]
- Tank《我不伟大,至少我能改变我。》[320K/MP3][160.41MB]
- Tank《我不伟大,至少我能改变我。》[FLAC/分轨][236.89MB]
- CD圣经推荐-夏韶声《谙2》SACD-ISO
- 钟镇涛-《百分百钟镇涛》首批限量版SACD-ISO
- 群星《继续微笑致敬许冠杰》[低速原抓WAV+CUE]
- 潘秀琼.2003-国语难忘金曲珍藏集【皇星全音】【WAV+CUE】
- 林东松.1997-2039玫瑰事件【宝丽金】【WAV+CUE】