神剑山庄资源网 Design By www.hcban.com

在使用完模型之后,添加这两行代码即可清空之前model占用的内存:

import tensorflow as tf
from keras import backend as K
 
K.clear_session()
tf.reset_default_graph()

补充知识:keras 多个模型测试阶段速度越来越慢问题的解决方法

问题描述

在实际应用或比赛中,经常会用到交叉验证(10倍或5倍)来提高泛化能力,这样在预测时需要加载多个模型。常用的方法为

mods = []
  from keras.utils.generic_utils import CustomObjectScope
  with CustomObjectScope({}):
    for model_file in tqdm.tqdm(model_files):
      mod = keras.models.load_model(model_file)
      mods.append(mod)
  return mods

使用这种方式时会发现,刚开始模型加载速度很快,但随着加载的模型数量增多,加载速度越来越慢,甚至延长了3倍以上。那么为什么会出现这种现象呢?

原因

由于tensorflow的图是静态图,但是如果直接加在不同的图(即不同的模型),应该都会存在内存中,原有的图并不会释放,因此造成了测试速度越来越慢。

解决方案

知道了原因,解决方案也就有了:每加载一个模型就对所有测试数据进行评估,同时在每次加载模型前,对当前session进行重置。keras的tf后台提供了clear_session方法来清除session

  import keras.backend.tensorflow_backend as KTF
  KTF.clear_session()
  session = tf.Session(config=config)
  KTF.set_session(session)

  with CustomObjectScope({}):
    model = keras.models.load_model(model_file)
  return model

以上这篇基于Keras 循环训练模型跑数据时内存泄漏的解决方式就是小编分享给大家的全部内容了,希望能给大家一个参考,也希望大家多多支持。

标签:
Keras,循环训练,内存泄漏

神剑山庄资源网 Design By www.hcban.com
神剑山庄资源网 免责声明:本站文章均来自网站采集或用户投稿,网站不提供任何软件下载或自行开发的软件! 如有用户或公司发现本站内容信息存在侵权行为,请邮件告知! 858582#qq.com
神剑山庄资源网 Design By www.hcban.com

评论“基于Keras 循环训练模型跑数据时内存泄漏的解决方式”

暂无基于Keras 循环训练模型跑数据时内存泄漏的解决方式的评论...

《魔兽世界》大逃杀!60人新游玩模式《强袭风暴》3月21日上线

暴雪近日发布了《魔兽世界》10.2.6 更新内容,新游玩模式《强袭风暴》即将于3月21 日在亚服上线,届时玩家将前往阿拉希高地展开一场 60 人大逃杀对战。

艾泽拉斯的冒险者已经征服了艾泽拉斯的大地及遥远的彼岸。他们在对抗世界上最致命的敌人时展现出过人的手腕,并且成功阻止终结宇宙等级的威胁。当他们在为即将于《魔兽世界》资料片《地心之战》中来袭的萨拉塔斯势力做战斗准备时,他们还需要在熟悉的阿拉希高地面对一个全新的敌人──那就是彼此。在《巨龙崛起》10.2.6 更新的《强袭风暴》中,玩家将会进入一个全新的海盗主题大逃杀式限时活动,其中包含极高的风险和史诗级的奖励。

《强袭风暴》不是普通的战场,作为一个独立于主游戏之外的活动,玩家可以用大逃杀的风格来体验《魔兽世界》,不分职业、不分装备(除了你在赛局中捡到的),光是技巧和战略的强弱之分就能决定出谁才是能坚持到最后的赢家。本次活动将会开放单人和双人模式,玩家在加入海盗主题的预赛大厅区域前,可以从强袭风暴角色画面新增好友。游玩游戏将可以累计名望轨迹,《巨龙崛起》和《魔兽世界:巫妖王之怒 经典版》的玩家都可以获得奖励。