神剑山庄资源网 Design By www.hcban.com

问题描述:

在利用神经网络进行分类和识别的时候,使用了keras这个封装层次比较高的框架,backend使用的是tensorflow-cpu。

在交叉验证的时候,出现 val_categorical_accuracy: 0.0000e+00的问题。

问题分析:

首先,弄清楚,训练集、验证集、测试集的区别,验证集是从训练集中提前拿出一部分的数据集。在keras中,一般都是使用这种方式来指定验证集占训练集和的总大小。

validation_split=0.2

比如,经典的数据集MNIST,共有60000个训练集,就会

Train on 48000 samples, validate on 12000 samples

我自己学习使用的数据集比较小

训练数据集样本数: 498 ,标签个数 498

Train on 398 samples, validate on 100 samples

基本上符合4:1(0.2)的分配

出现 val_categorical_accuracy: 0.0000e+00的问题,我这边的原因主要是,样本本身是有规律的,导致分配的验证集的标签可能在训练集中可能就没有。

(PS:我实际看了下,498个样本共10个标签,后100个验证集占据了基本上后面3个标签(实际上,这三个标签占了103个样本),也就是前面的训练集基本上就没有后面的标签,整体占据前面7个标签)

问题解决:

把最初始的训练集打乱,当然,标签也要跟着移动。

index = [i for i in range(len(x_train))]
np.random.shuffle(index)
x_train = x_train[index]
y_train = y_train[index]
 
model.fit(x_train, y_train, batch_size=32, epochs=10, validation_split=0.2, verbose=1)

同样的问题表现,可能有不同的原因,解决方法也不尽相同,这里只是和大家分享我自己的问题解决过程。

补充知识:keras中自定义验证集的性能评估

如下所示:

def AUC(y_true,y_pred):
not_y_pred=np.logical_not(y_pred)
y_int1=y_true*y_pred
y_int0=np.logical_not(y_true)*not_y_pred
TP=np.sum(y_pred*y_int1)
FP=np.sum(y_pred)-TP
TN=np.sum(not_y_pred*y_int0)
FN=np.sum(not_y_pred)-TN
TPR=np.float(TP)/(TP+FN)
FPR=np.float(FP)/(FP+TN)
return((1+TPR-FPR)/2)

以上这篇解决keras,val_categorical_accuracy:,0.0000e+00问题就是小编分享给大家的全部内容了,希望能给大家一个参考,也希望大家多多支持。

标签:
keras,val_categorical_accuracy,0.0000e+00

神剑山庄资源网 Design By www.hcban.com
神剑山庄资源网 免责声明:本站文章均来自网站采集或用户投稿,网站不提供任何软件下载或自行开发的软件! 如有用户或公司发现本站内容信息存在侵权行为,请邮件告知! 858582#qq.com
神剑山庄资源网 Design By www.hcban.com

评论“解决keras,val_categorical_accuracy:,0.0000e+00问题”

暂无解决keras,val_categorical_accuracy:,0.0000e+00问题的评论...

《魔兽世界》大逃杀!60人新游玩模式《强袭风暴》3月21日上线

暴雪近日发布了《魔兽世界》10.2.6 更新内容,新游玩模式《强袭风暴》即将于3月21 日在亚服上线,届时玩家将前往阿拉希高地展开一场 60 人大逃杀对战。

艾泽拉斯的冒险者已经征服了艾泽拉斯的大地及遥远的彼岸。他们在对抗世界上最致命的敌人时展现出过人的手腕,并且成功阻止终结宇宙等级的威胁。当他们在为即将于《魔兽世界》资料片《地心之战》中来袭的萨拉塔斯势力做战斗准备时,他们还需要在熟悉的阿拉希高地面对一个全新的敌人──那就是彼此。在《巨龙崛起》10.2.6 更新的《强袭风暴》中,玩家将会进入一个全新的海盗主题大逃杀式限时活动,其中包含极高的风险和史诗级的奖励。

《强袭风暴》不是普通的战场,作为一个独立于主游戏之外的活动,玩家可以用大逃杀的风格来体验《魔兽世界》,不分职业、不分装备(除了你在赛局中捡到的),光是技巧和战略的强弱之分就能决定出谁才是能坚持到最后的赢家。本次活动将会开放单人和双人模式,玩家在加入海盗主题的预赛大厅区域前,可以从强袭风暴角色画面新增好友。游玩游戏将可以累计名望轨迹,《巨龙崛起》和《魔兽世界:巫妖王之怒 经典版》的玩家都可以获得奖励。