在《python深度学习》这本书中。
一、21页mnist十分类
导入数据集 from keras.datasets import mnist (train_images, train_labels), (test_images, test_labels) = mnist.load_data() 初始数据维度: > train_images.shape (60000, 28, 28) > len(train_labels) 60000 > train_labels array([5, 0, 4, ..., 5, 6, 8], dtype=uint8) 数据预处理: train_images = train_images.reshape((60000, 28 * 28)) train_images = train_images.astype('float32') / 255 train_labels = to_categorical(train_labels) 之后: print(train_images, type(train_images), train_images.shape, train_images.dtype) print(train_labels, type(train_labels), train_labels.shape, train_labels.dtype) 结果: [[0. 0. 0. ... 0. 0. 0.] [0. 0. 0. ... 0. 0. 0.] [0. 0. 0. ... 0. 0. 0.] ... [0. 0. 0. ... 0. 0. 0.] [0. 0. 0. ... 0. 0. 0.] [0. 0. 0. ... 0. 0. 0.]] <class 'numpy.ndarray'> (60000, 784) float32 [[0. 0. 0. ... 0. 0. 0.] [1. 0. 0. ... 0. 0. 0.] [0. 0. 0. ... 0. 0. 0.] ... [0. 0. 0. ... 0. 0. 0.] [0. 0. 0. ... 0. 0. 0.] [0. 0. 0. ... 0. 1. 0.]] <class 'numpy.ndarray'> (60000, 10) float32
二、51页IMDB二分类
导入数据:
from keras.datasets import imdb (train_data, train_labels), (test_data, test_labels) = imdb.load_data(num_words=10000)
参数 num_words=10000 的意思是仅保留训练数据中前 10 000 个最常出现的单词。
train_data和test_data都是numpy.ndarray类型,都是一维的(共25000个元素,相当于25000个list),其中每个list代表一条评论,每个list中的每个元素的值范围在0-9999 ,代表10000个最常见单词的每个单词的索引,每个list长度不一,因为每条评论的长度不一,例如train_data中的list最短的为11,最长的为189。
train_labels和test_labels都是含25000个元素(元素的值要不0或者1,代表两类)的list。
数据预处理:
# 将整数序列编码为二进制矩阵 def vectorize_sequences(sequences, dimension=10000): # Create an all-zero matrix of shape (len(sequences), dimension) results = np.zeros((len(sequences), dimension)) for i, sequence in enumerate(sequences): results[i, sequence] = 1. # set specific indices of results[i] to 1s return results x_train = vectorize_sequences(train_data) x_test = vectorize_sequences(test_data) 第一种方式:shape为(25000,) y_train = np.asarray(train_labels).astype('float32') #就用这种方式就行了 y_test = np.asarray(test_labels).astype('float32') 第二种方式:shape为(25000,1) y_train = np.asarray(train_labels).astype('float32').reshape(25000, 1) y_test = np.asarray(test_labels).astype('float32').reshape(25000, 1) 第三种方式:shape为(25000,2) y_train = to_categorical(train_labels) #变成one-hot向量 y_test = to_categorical(test_labels)
第三种方式,相当于把二分类看成了多分类,所以网络的结构同时需要更改,
最后输出的维度:1->2
最后的激活函数:sigmoid->softmax
损失函数:binary_crossentropy->categorical_crossentropy
预处理之后,train_data和test_data变成了shape为(25000,10000),dtype为float32的ndarray(one-hot向量),train_labels和test_labels变成了shape为(25000,)的一维ndarray,或者(25000,1)的二维ndarray,或者shape为(25000,2)的one-hot向量。
注:
1.sigmoid对应binary_crossentropy,softmax对应categorical_crossentropy
2.网络的所有输入和目标都必须是浮点数张量
补充知识:keras输入数据的方法:model.fit和model.fit_generator
1.第一种,普通的不用数据增强的
from keras.datasets import mnist,cifar10,cifar100 (X_train, y_train), (X_valid, Y_valid) = cifar10.load_data() model.fit(X_train, Y_train, batch_size=batch_size, nb_epoch=nb_epoch, shuffle=True, verbose=1, validation_data=(X_valid, Y_valid), )
2.第二种,带数据增强的 ImageDataGenerator,可以旋转角度、平移等操作。
from keras.preprocessing.image import ImageDataGenerator (trainX, trainY), (testX, testY) = cifar100.load_data() trainX = trainX.astype('float32') testX = testX.astype('float32') trainX /= 255. testX /= 255. Y_train = np_utils.to_categorical(trainY, nb_classes) Y_test = np_utils.to_categorical(testY, nb_classes) generator = ImageDataGenerator(rotation_range=15, width_shift_range=5./32, height_shift_range=5./32) generator.fit(trainX, seed=0) model.fit_generator(generator.flow(trainX, Y_train, batch_size=batch_size), steps_per_epoch=len(trainX) // batch_size, epochs=nb_epoch, callbacks=callbacks, validation_data=(testX, Y_test), validation_steps=testX.shape[0] // batch_size, verbose=1)
以上这篇keras分类模型中的输入数据与标签的维度实例就是小编分享给大家的全部内容了,希望能给大家一个参考,也希望大家多多支持。
keras,分类模型,标签维度
《魔兽世界》大逃杀!60人新游玩模式《强袭风暴》3月21日上线
暴雪近日发布了《魔兽世界》10.2.6 更新内容,新游玩模式《强袭风暴》即将于3月21 日在亚服上线,届时玩家将前往阿拉希高地展开一场 60 人大逃杀对战。
艾泽拉斯的冒险者已经征服了艾泽拉斯的大地及遥远的彼岸。他们在对抗世界上最致命的敌人时展现出过人的手腕,并且成功阻止终结宇宙等级的威胁。当他们在为即将于《魔兽世界》资料片《地心之战》中来袭的萨拉塔斯势力做战斗准备时,他们还需要在熟悉的阿拉希高地面对一个全新的敌人──那就是彼此。在《巨龙崛起》10.2.6 更新的《强袭风暴》中,玩家将会进入一个全新的海盗主题大逃杀式限时活动,其中包含极高的风险和史诗级的奖励。
《强袭风暴》不是普通的战场,作为一个独立于主游戏之外的活动,玩家可以用大逃杀的风格来体验《魔兽世界》,不分职业、不分装备(除了你在赛局中捡到的),光是技巧和战略的强弱之分就能决定出谁才是能坚持到最后的赢家。本次活动将会开放单人和双人模式,玩家在加入海盗主题的预赛大厅区域前,可以从强袭风暴角色画面新增好友。游玩游戏将可以累计名望轨迹,《巨龙崛起》和《魔兽世界:巫妖王之怒 经典版》的玩家都可以获得奖励。
更新日志
- 【雨果唱片】中国管弦乐《鹿回头》WAV
- APM亚流新世代《一起冒险》[FLAC/分轨][106.77MB]
- 崔健《飞狗》律冻文化[WAV+CUE][1.1G]
- 罗志祥《舞状元 (Explicit)》[320K/MP3][66.77MB]
- 尤雅.1997-幽雅精粹2CD【南方】【WAV+CUE】
- 张惠妹.2007-STAR(引进版)【EMI百代】【WAV+CUE】
- 群星.2008-LOVE情歌集VOL.8【正东】【WAV+CUE】
- 罗志祥《舞状元 (Explicit)》[FLAC/分轨][360.76MB]
- Tank《我不伟大,至少我能改变我。》[320K/MP3][160.41MB]
- Tank《我不伟大,至少我能改变我。》[FLAC/分轨][236.89MB]
- CD圣经推荐-夏韶声《谙2》SACD-ISO
- 钟镇涛-《百分百钟镇涛》首批限量版SACD-ISO
- 群星《继续微笑致敬许冠杰》[低速原抓WAV+CUE]
- 潘秀琼.2003-国语难忘金曲珍藏集【皇星全音】【WAV+CUE】
- 林东松.1997-2039玫瑰事件【宝丽金】【WAV+CUE】