因为需要,要重写训练好的keras模型,虽然只具备预测功能,但是发现还是有很多坑要趟过。其中Dropout这个坑,我记忆犹新。
一开始,我以为预测时要保持和训练时完全一样的网络结构,也就是预测时用的网络也是有丢弃的网络节点,但是这样想就掉进了一个大坑!因为无法通过已经训练好的模型,来获取其训练时随机丢弃的网络节点是那些,这本身就根本不可能。
更重要的是:我发现每一个迭代周期丢弃的神经元也不完全一样。
假若迭代500次,网络共有1000个神经元, 在第n(1<= n <500)个迭代周期内,从1000个神经元里随机丢弃了200个神经元,在n+1个迭代周期内,会在这1000个神经元里(不是在剩余得800个)重新随机丢弃200个神经元。
训练过程中,使用Dropout,其实就是对部分权重和偏置在某次迭代训练过程中,不参与计算和更新而已,并不是不再使用这些权重和偏置了(预测时,会使用全部的神经元,包括使用训练时丢弃的神经元)。
也就是说在预测过程中完全没有Dropout什么事了,他只是在训练时有用,特别是针对训练集比较小时防止过拟合非常有用。
补充知识:TensorFlow直接使用ckpt模型predict不用restore
我就废话不多说了,大家还是直接看代码吧~
# -*- coding: utf-8 -*- # from util import * import cv2 import numpy as np import tensorflow as tf # from tensorflow.python.framework import graph_util import os os.environ['CUDA_DEVICE_ORDER'] = 'PCI_BUS_ID' os.environ['CUDA_VISIBLE_DEVICES'] = '0' image_path = './8760.pgm' input_checkpoint = './model/xu_spatial_model_1340.ckpt' sess = tf.Session() saver = tf.train.import_meta_graph(input_checkpoint + '.meta') saver.restore(sess, input_checkpoint) # input:0作为输入图像,keep_prob:0作为dropout的参数,测试时值为1,is_training:0训练参数 input_image_tensor = sess.graph.get_tensor_by_name("coef_input:0") is_training = sess.graph.get_tensor_by_name('is_training:0') batch_size = sess.graph.get_tensor_by_name('batch_size:0') # 定义输出的张量名称 output_tensor_name = sess.graph.get_tensor_by_name("xuNet/logits:0") # xuNet/Logits/logits image = cv2.imread(image_path, 0) # 读取测试图片 out = sess.run(output_tensor_name, feed_dict={input_image_tensor: np.reshape(image, (1, 512, 512, 1)), is_training: False, batch_size: 1}) print(out)
ckpt模型中的所有节点名称,可以这样查看
[n.name for n in tf.get_default_graph().as_graph_def().node]
以上这篇浅谈keras中Dropout在预测过程中是否仍要起作用就是小编分享给大家的全部内容了,希望能给大家一个参考,也希望大家多多支持。
《魔兽世界》大逃杀!60人新游玩模式《强袭风暴》3月21日上线
暴雪近日发布了《魔兽世界》10.2.6 更新内容,新游玩模式《强袭风暴》即将于3月21 日在亚服上线,届时玩家将前往阿拉希高地展开一场 60 人大逃杀对战。
艾泽拉斯的冒险者已经征服了艾泽拉斯的大地及遥远的彼岸。他们在对抗世界上最致命的敌人时展现出过人的手腕,并且成功阻止终结宇宙等级的威胁。当他们在为即将于《魔兽世界》资料片《地心之战》中来袭的萨拉塔斯势力做战斗准备时,他们还需要在熟悉的阿拉希高地面对一个全新的敌人──那就是彼此。在《巨龙崛起》10.2.6 更新的《强袭风暴》中,玩家将会进入一个全新的海盗主题大逃杀式限时活动,其中包含极高的风险和史诗级的奖励。
《强袭风暴》不是普通的战场,作为一个独立于主游戏之外的活动,玩家可以用大逃杀的风格来体验《魔兽世界》,不分职业、不分装备(除了你在赛局中捡到的),光是技巧和战略的强弱之分就能决定出谁才是能坚持到最后的赢家。本次活动将会开放单人和双人模式,玩家在加入海盗主题的预赛大厅区域前,可以从强袭风暴角色画面新增好友。游玩游戏将可以累计名望轨迹,《巨龙崛起》和《魔兽世界:巫妖王之怒 经典版》的玩家都可以获得奖励。
更新日志
- 【雨果唱片】中国管弦乐《鹿回头》WAV
- APM亚流新世代《一起冒险》[FLAC/分轨][106.77MB]
- 崔健《飞狗》律冻文化[WAV+CUE][1.1G]
- 罗志祥《舞状元 (Explicit)》[320K/MP3][66.77MB]
- 尤雅.1997-幽雅精粹2CD【南方】【WAV+CUE】
- 张惠妹.2007-STAR(引进版)【EMI百代】【WAV+CUE】
- 群星.2008-LOVE情歌集VOL.8【正东】【WAV+CUE】
- 罗志祥《舞状元 (Explicit)》[FLAC/分轨][360.76MB]
- Tank《我不伟大,至少我能改变我。》[320K/MP3][160.41MB]
- Tank《我不伟大,至少我能改变我。》[FLAC/分轨][236.89MB]
- CD圣经推荐-夏韶声《谙2》SACD-ISO
- 钟镇涛-《百分百钟镇涛》首批限量版SACD-ISO
- 群星《继续微笑致敬许冠杰》[低速原抓WAV+CUE]
- 潘秀琼.2003-国语难忘金曲珍藏集【皇星全音】【WAV+CUE】
- 林东松.1997-2039玫瑰事件【宝丽金】【WAV+CUE】