神剑山庄资源网 Design By www.hcban.com

在matplotlib中,imshow方法用于绘制热图,基本用法如下

import matplotlib.pyplot as plt
import numpy as np
np.random.seed(123456789)
data = np.random.rand(25).reshape(5, 5)
plt.imshow(data)

输出结果如下

matplotlib基础绘图命令之imshow的使用

imshow方法首先将二维数组的值标准化为0到1之间的值,然后根据指定的渐变色依次赋予每个单元格对应的颜色,就形成了热图。对于热图而言,通常我们还需要画出对应的图例,图例通过colorbar方法来实现,代码如下

plt.imshow(data)
plt.colorbar()

输出结果如下

matplotlib基础绘图命令之imshow的使用

imshow方法常用的几个参数如下

1. cmap

cmap是colormap的简称,用于指定渐变色,默认的值为viridis, 在matplotlib中,内置了一系列的渐变色,用法如下 

plt.imshow(data, cmap='Greens')

输出结果如下

matplotlib基础绘图命令之imshow的使用

完整的内置colormap的列表见如下链接

https://matplotlib.org/tutorials/colors/colormaps.html

2. aspect

aspect用于指定热图的单元格的大小,默认值为equal,此时单元格用于是一个方块,当设置为auto时,会根据画布的大小动态调整单元格的大小,用法如下

plt.imshow(data, aspect='auto')

输出结果如下

matplotlib基础绘图命令之imshow的使用

3. alpha

alpha参数用于指定透明度,用法如下

plt.imshow(data, alpha=0.8)

输出结果如下

matplotlib基础绘图命令之imshow的使用

4. origin

orign参数指定绘制热图时的方向,默认值为upper,  此时热图的右上角为(0, 0), 当设置为lower时,热图的左下角为(0,0), 用法如下

plt.imshow(data, origin='lower')

输出结果如下

matplotlib基础绘图命令之imshow的使用

5. vmin和vmax

vmin和vmax参数用于限定数值的范围,只将vmin和vmax之间的值进行映射,用法如下

plt.imshow(data, vmin=-0.8, vmax=0.8)
plt.colorbar()

输出结果如下

matplotlib基础绘图命令之imshow的使用

6. interpolation

interprolation参数控制热图的显示形式,是一个较难理解的参数,同样的数据,不同取值对应的热图形式如下

matplotlib基础绘图命令之imshow的使用

在日常使用而言,nearest和None是应用的最多的。

7. extent

extent参数指定热图x轴和y轴的极值,取值为一个长度为4的元组或列表,其中,前两个数值对应x轴的最小值和最大值,后两个参数对应y轴的最小值和最大值,用法如下

plt.imshow(data, extent=(-0.5, 4.5, 4.5, -0.5))

输出结果如下

matplotlib基础绘图命令之imshow的使用

可以看到,上述代码的输出和默认输出完全一致。其实, extent和origin两个参数是相互关联的,origin参数的值为upper时,extent参数的默认值如下

(-0.5, ncol(data) - 0.5, nrow(data)-0.5, 0.5)

当origin参数的值为lower时,extent参数的默认值如下

(-0.5, ncol(data) - 0.5, -0.5, nrow(data)-0.5)

修改extent参数的值,图中单元格对应的刻度会发生变化,示意如下

plt.imshow(data,extent=(-0.5,5.5,-5.5,0.5))

输出结果如下

matplotlib基础绘图命令之imshow的使用

大多数的情况下,我们都不需要自己来手动指定extent参数的值。

在绘制热图时,还可以结合xlim和ylim参数,来为热图的周围增加空隙,代码如下

plt.imshow(data)
plt.xlim(-1, 5)
plt.ylim(5, -1)
plt.colorbar()

输出结果如下

matplotlib基础绘图命令之imshow的使用

相比R语言中的热图,matplotlib中的热图没有聚类树的功能,需要自己手动来实现,但是可以很方便的添加图例,而且受益于matplotlib灵活的基础功能,可以实现非常复杂的如图。

python使用plt.imshow在坐标轴上展示图片,坐标设置问题。

坐标默认是从上到下,从左到右,例如

matplotlib基础绘图命令之imshow的使用

matplotlib.pyplot.imshow(X, cmap=None, norm=None, aspect=None, interpolation=None, alpha=None, 
             vmin=None, vmax=None, origin=None, extent=None, shape=None, 
             filternorm=1, filterrad=4.0, imlim=None, resample=None, 
             url=None, hold=None, data=None, **kwargs

他的参数很多,找了很久,才发现,应该是设置origin参数。

origin : [‘upper' | ‘lower'], optional, default: None
  Place the [0,0] index of the array in the upper left or lower left corner of the axes. 
  If None, default to rc image.origin.

origin=‘lower',就得到如下图:

matplotlib基础绘图命令之imshow的使用

标签:
matplotlib,imshow

神剑山庄资源网 Design By www.hcban.com
神剑山庄资源网 免责声明:本站文章均来自网站采集或用户投稿,网站不提供任何软件下载或自行开发的软件! 如有用户或公司发现本站内容信息存在侵权行为,请邮件告知! 858582#qq.com
神剑山庄资源网 Design By www.hcban.com

评论“matplotlib基础绘图命令之imshow的使用”

暂无matplotlib基础绘图命令之imshow的使用的评论...

《魔兽世界》大逃杀!60人新游玩模式《强袭风暴》3月21日上线

暴雪近日发布了《魔兽世界》10.2.6 更新内容,新游玩模式《强袭风暴》即将于3月21 日在亚服上线,届时玩家将前往阿拉希高地展开一场 60 人大逃杀对战。

艾泽拉斯的冒险者已经征服了艾泽拉斯的大地及遥远的彼岸。他们在对抗世界上最致命的敌人时展现出过人的手腕,并且成功阻止终结宇宙等级的威胁。当他们在为即将于《魔兽世界》资料片《地心之战》中来袭的萨拉塔斯势力做战斗准备时,他们还需要在熟悉的阿拉希高地面对一个全新的敌人──那就是彼此。在《巨龙崛起》10.2.6 更新的《强袭风暴》中,玩家将会进入一个全新的海盗主题大逃杀式限时活动,其中包含极高的风险和史诗级的奖励。

《强袭风暴》不是普通的战场,作为一个独立于主游戏之外的活动,玩家可以用大逃杀的风格来体验《魔兽世界》,不分职业、不分装备(除了你在赛局中捡到的),光是技巧和战略的强弱之分就能决定出谁才是能坚持到最后的赢家。本次活动将会开放单人和双人模式,玩家在加入海盗主题的预赛大厅区域前,可以从强袭风暴角色画面新增好友。游玩游戏将可以累计名望轨迹,《巨龙崛起》和《魔兽世界:巫妖王之怒 经典版》的玩家都可以获得奖励。