背景
日常开发中,难免遇到并发场景,而并发场景难免需要做流量控制,即需要对并发的进程或者线程的总量进行控制。 今天简单总结两种常用的控制线程个数的方法。
方法一:进程池/线程池
如下例demo所示, 创建了一个大小是4的进程池,然后创建5个进程,并启动
from multiprocessing import Pool import os, time, random def long_time_task(name): print('Run task %s (%s)...' % (name, os.getpid())) start = time.time() time.sleep(random.random() * 3) end = time.time() print('Task %s runs %0.2f seconds.' % (name, (end - start))) if __name__ == '__main__': print('Parent process %s.' % os.getpid()) p = Pool(4) for i in range(5): p.apply_async(long_time_task, args=(i,)) print('Waiting for all subprocesses done...') p.close() p.join() print('All subprocesses done.')
运行结果如下,可以看到第5个进程会等池子里的进程完成一个后才会被启动
Run task 0 (32952)... Run task 1 (32951)... Run task 2 (32953)... Run task 3 (32954)... Task 2 runs 0.68 seconds. Run task 4 (32953)... Task 1 runs 1.41 seconds. Task 0 runs 1.44 seconds. Task 4 runs 2.15 seconds. Task 3 runs 2.98 seconds. All subprocesses done.
方法二:queue
queue 模块即队列,特别适合处理信息在多个线程间安全交换的多线程程序中。 下面的demo展示了如何通过queue来限制线程的并发个数
import threading import queue import time import random import os maxThreads = 4 class Store(threading.Thread): def __init__(self, q): threading.Thread.__init__(self) self.queue = q # self.store = store def run(self): try: print('Run task (%s)...' % (os.getpid())) start = time.time() time.sleep(random.random() * 3) end = time.time() t = threading.currentThread() # 线程ID print('Thread id : %d' % t.ident) print('Thread name : %s' % t.getName()) print('Task runs %0.2f seconds.' % (end - start)) except Exception as e: print(e) finally: self.queue.get() self.queue.task_done() def main(): q = queue.Queue(maxThreads) for s in range(6): q.put(s) t = Store(q) t.start() q.join() print('over') if __name__ == '__main__': main()
运行结果如下:
Run task (33259)... Run task (33259)... Run task (33259)... Run task (33259)... Thread id : 123145444999168 Thread name : Thread-13 Task runs 0.04 seconds. Run task (33259)... Thread id : 123145394630656 Thread name : Thread-10 Task runs 1.02 seconds. Run task (33259)... Thread id : 123145428209664 Thread name : Thread-12 Task runs 1.20 seconds. Thread id : 123145394630656 Thread name : Thread-17 Task runs 0.68 seconds. Thread id : 123145444999168 Thread name : Thread-14 Task runs 1.79 seconds. Thread id : 123145411420160 Thread name : Thread-11 Task runs 2.96 seconds. over
以上就是python如何控制进程或者线程的个数的详细内容,更多关于python 控制进程或线程的资料请关注其它相关文章!
《魔兽世界》大逃杀!60人新游玩模式《强袭风暴》3月21日上线
暴雪近日发布了《魔兽世界》10.2.6 更新内容,新游玩模式《强袭风暴》即将于3月21 日在亚服上线,届时玩家将前往阿拉希高地展开一场 60 人大逃杀对战。
艾泽拉斯的冒险者已经征服了艾泽拉斯的大地及遥远的彼岸。他们在对抗世界上最致命的敌人时展现出过人的手腕,并且成功阻止终结宇宙等级的威胁。当他们在为即将于《魔兽世界》资料片《地心之战》中来袭的萨拉塔斯势力做战斗准备时,他们还需要在熟悉的阿拉希高地面对一个全新的敌人──那就是彼此。在《巨龙崛起》10.2.6 更新的《强袭风暴》中,玩家将会进入一个全新的海盗主题大逃杀式限时活动,其中包含极高的风险和史诗级的奖励。
《强袭风暴》不是普通的战场,作为一个独立于主游戏之外的活动,玩家可以用大逃杀的风格来体验《魔兽世界》,不分职业、不分装备(除了你在赛局中捡到的),光是技巧和战略的强弱之分就能决定出谁才是能坚持到最后的赢家。本次活动将会开放单人和双人模式,玩家在加入海盗主题的预赛大厅区域前,可以从强袭风暴角色画面新增好友。游玩游戏将可以累计名望轨迹,《巨龙崛起》和《魔兽世界:巫妖王之怒 经典版》的玩家都可以获得奖励。
更新日志
- 【雨果唱片】中国管弦乐《鹿回头》WAV
- APM亚流新世代《一起冒险》[FLAC/分轨][106.77MB]
- 崔健《飞狗》律冻文化[WAV+CUE][1.1G]
- 罗志祥《舞状元 (Explicit)》[320K/MP3][66.77MB]
- 尤雅.1997-幽雅精粹2CD【南方】【WAV+CUE】
- 张惠妹.2007-STAR(引进版)【EMI百代】【WAV+CUE】
- 群星.2008-LOVE情歌集VOL.8【正东】【WAV+CUE】
- 罗志祥《舞状元 (Explicit)》[FLAC/分轨][360.76MB]
- Tank《我不伟大,至少我能改变我。》[320K/MP3][160.41MB]
- Tank《我不伟大,至少我能改变我。》[FLAC/分轨][236.89MB]
- CD圣经推荐-夏韶声《谙2》SACD-ISO
- 钟镇涛-《百分百钟镇涛》首批限量版SACD-ISO
- 群星《继续微笑致敬许冠杰》[低速原抓WAV+CUE]
- 潘秀琼.2003-国语难忘金曲珍藏集【皇星全音】【WAV+CUE】
- 林东松.1997-2039玫瑰事件【宝丽金】【WAV+CUE】