Python 界有条不成文的准则: 计算密集型任务适合多进程,IO 密集型任务适合多线程。本篇来作个比较。
通常来说多线程相对于多进程有优势,因为创建一个进程开销比较大,然而因为在 python 中有 GIL 这把大锁的存在,导致执行计算密集型任务时多线程实际只能是单线程。而且由于线程之间切换的开销导致多线程往往比实际的单线程还要慢,所以在 python 中计算密集型任务通常使用多进程,因为各个进程有各自独立的 GIL,互不干扰。
而在 IO 密集型任务中,CPU 时常处于等待状态,操作系统需要频繁与外界环境进行交互,如读写文件,在网络间通信等。在这期间 GIL 会被释放,因而就可以使用真正的多线程。
以上是理论,下面做一个简单的模拟测试: 大量计算用 math.sin() + math.cos()
来代替,IO 密集型用 time.sleep()
来模拟。 在 Python 中有多种方式可以实现多进程和多线程,这里一并纳入看看是否有效率差异:
- 多进程: joblib.multiprocessing, multiprocessing.Pool, multiprocessing.apply_async, concurrent.futures.ProcessPoolExecutor
- 多线程: joblib.threading, threading.Thread, concurrent.futures.ThreadPoolExecutor
from multiprocessing import Pool from threading import Thread from concurrent.futures import ThreadPoolExecutor, ProcessPoolExecutor import time, os, math from joblib import Parallel, delayed, parallel_backend def f_IO(a): # IO 密集型 time.sleep(5) def f_compute(a): # 计算密集型 for _ in range(int(1e7)): math.sin(40) + math.cos(40) return def normal(sub_f): for i in range(6): sub_f(i) return def joblib_process(sub_f): with parallel_backend("multiprocessing", n_jobs=6): res = Parallel()(delayed(sub_f)(j) for j in range(6)) return def joblib_thread(sub_f): with parallel_backend('threading', n_jobs=6): res = Parallel()(delayed(sub_f)(j) for j in range(6)) return def mp(sub_f): with Pool(processes=6) as p: res = p.map(sub_f, list(range(6))) return def asy(sub_f): with Pool(processes=6) as p: result = [] for j in range(6): a = p.apply_async(sub_f, args=(j,)) result.append(a) res = [j.get() for j in result] def thread(sub_f): threads = [] for j in range(6): t = Thread(target=sub_f, args=(j,)) threads.append(t) t.start() for t in threads: t.join() def thread_pool(sub_f): with ThreadPoolExecutor(max_workers=6) as executor: res = [executor.submit(sub_f, j) for j in range(6)] def process_pool(sub_f): with ProcessPoolExecutor(max_workers=6) as executor: res = executor.map(sub_f, list(range(6))) def showtime(f, sub_f, name): start_time = time.time() f(sub_f) print("{} time: {:.4f}s".format(name, time.time() - start_time)) def main(sub_f): showtime(normal, sub_f, "normal") print() print("------ 多进程 ------") showtime(joblib_process, sub_f, "joblib multiprocess") showtime(mp, sub_f, "pool") showtime(asy, sub_f, "async") showtime(process_pool, sub_f, "process_pool") print() print("----- 多线程 -----") showtime(joblib_thread, sub_f, "joblib thread") showtime(thread, sub_f, "thread") showtime(thread_pool, sub_f, "thread_pool") if __name__ == "__main__": print("----- 计算密集型 -----") sub_f = f_compute main(sub_f) print() print("----- IO 密集型 -----") sub_f = f_IO main(sub_f)
结果:
----- 计算密集型 ----- normal time: 15.1212s ------ 多进程 ------ joblib multiprocess time: 8.2421s pool time: 8.5439s async time: 8.3229s process_pool time: 8.1722s ----- 多线程 ----- joblib thread time: 21.5191s thread time: 21.3865s thread_pool time: 22.5104s ----- IO 密集型 ----- normal time: 30.0305s ------ 多进程 ------ joblib multiprocess time: 5.0345s pool time: 5.0188s async time: 5.0256s process_pool time: 5.0263s ----- 多线程 ----- joblib thread time: 5.0142s thread time: 5.0055s thread_pool time: 5.0064s
上面每一方法都统一创建6个进程/线程,结果是计算密集型任务中速度:多进程 > 单进程/线程 > 多线程, IO 密集型任务速度: 多线程 > 多进程 > 单进程/线程。
以上就是Python 多进程、多线程效率比较的详细内容,更多关于Python 多进程、多线程的资料请关注其它相关文章!
稳了!魔兽国服回归的3条重磅消息!官宣时间再确认!
昨天有一位朋友在大神群里分享,自己亚服账号被封号之后居然弹出了国服的封号信息对话框。
这里面让他访问的是一个国服的战网网址,com.cn和后面的zh都非常明白地表明这就是国服战网。
而他在复制这个网址并且进行登录之后,确实是网易的网址,也就是我们熟悉的停服之后国服发布的暴雪游戏产品运营到期开放退款的说明。这是一件比较奇怪的事情,因为以前都没有出现这样的情况,现在突然提示跳转到国服战网的网址,是不是说明了简体中文客户端已经开始进行更新了呢?
更新日志
- 小骆驼《草原狼》[正版CD抓轨WAV+CUE]
- 群星.2011-剧集金曲精选2CD【永恒】【WAV+CUE】
- 林忆莲.1996-夜太黑【滚石】【WAV+CUE】
- 方皓玟.2009-UNLOCKME【东亚】【WAV+CUE】
- 群星《2024好听新歌22》十倍音质 U盘音乐[WAV分轨]
- 林宥嘉《神秘嘉宾》引进版[WAV分轨][1G]
- 2024罗志祥《舞狀元》[FLAC/MP3][1G]
- 张美玲侯俊辉1999-福建情歌对唱[南方][WAV+CUE]
- 江希文.1994-伝说少女(饿狼伝说动画原声大碟)【嘉音】【WAV+CUE】
- 黄思婷2020-风中泪[豪记][WAV+CUE]
- 刘韵.1998-DENON.MASTERSONIC系列【EMI百代】【WAV+CUE】
- 群星.2024-你的谎言也动听影视原声带【韶愔音乐】【FLAC分轨】
- 群星.2003-难忘的影视金曲·港台篇【正大国际】【WAV+CUE】
- 试音天碟《原音HQCD》风林 [WAV+CUE][1.1G]
- 李思思《喜欢你》头版限量编号24K金碟[低速原抓WAV+CUE][1.1G]